Skip to main content
Log in

Effect of hydrogenated silicon film microstructure on the surface states of n-type silicon nanowires and solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here various microstructure hydrogenated silicon has been used to passivate n-type silicon nanowires (SiNWs) and its core/shell solar cells. There are two differences in photoluminescence (PL) spectroscopy between SiNWs and passivated SiNWs: (a) the increased PL intensity and (b) a blue-shift of the PL peak. Through analyzing the PL results, we found the infrared band at 800 nm is associated with dangling bonds on SiNWs. The performance of the core/shell SiNWs solar cells are improved attributed to reduced surface defects by the intrinsic Si:H layer passivation. Furthermore, the passivation effect with a-Si:H layer is better than its counterpart with µc-Si:H layer, which is due to the different microstructures especially the hydrogen-terminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.S. Lewis, Science 315, 798 (2007)

    Article  CAS  Google Scholar 

  2. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  CAS  Google Scholar 

  3. J. Jie, W. Zhang, K. Peng, G. Yuan, C.S. Lee, S.-T. Lee, Adv. Funct. Mater. 18, 3251 (2008)

    Article  CAS  Google Scholar 

  4. Y. Cui, J. Wang, S.R. Plissard, A. Cavalli, T.T. Vu, R.P. van Veldhoven, L. Gao, M. Trainor, M.A. Verheijen, J.E. Haverkort, E.P. Bakkers, Nano Lett. 13, 4113 (2013)

    Article  CAS  Google Scholar 

  5. P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, Nano Today 11, 704 (2016)

    Article  CAS  Google Scholar 

  6. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  CAS  Google Scholar 

  7. Y. Dan, K. Seo, K. Takei, J.H. Meza, A. Javey, K.B. Crozier, Nano Lett. 11, 2527 (2011)

    Article  CAS  Google Scholar 

  8. A.D. Mallorquí, E. Alarcón-Lladó, I.C. Mundet, A. Kiani, B. Demaurex, S. De Wolf, A. Menzel, M. Zacharias, A.F.I. Morral, Nano Res. 8, 673 (2015)

    Article  Google Scholar 

  9. M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, P. Yu, Opt. Express 19, A28 (2011)

    Article  CAS  Google Scholar 

  10. O. Gunawan, S. Guha, Sol. Energy Mater. Sol. Cells 93, 1388 (2009)

    Article  CAS  Google Scholar 

  11. X.X. Lin, X. Hua, Z.G. Huang, W.Z. Shen, Nanotechnology 24, 235402 (2013)

    Article  CAS  Google Scholar 

  12. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)

    Article  Google Scholar 

  13. Y. Lu, A. Lal, Nano Lett. 10, 4651 (2010)

    Article  CAS  Google Scholar 

  14. X. Xie, X. Zeng, P. Yang, C. Wang, Q. Wang, J. Cryst. Growth 347, 7 (2012)

    Article  CAS  Google Scholar 

  15. Q. Wang, G. Yue, J. Li, D. Han, Solid State Commun. 113, 175 (2000)

    Article  Google Scholar 

  16. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, Sol. Energy Mater. Sol. Cells 62, 97 (2000)

    Article  CAS  Google Scholar 

  17. P.M. Fauchet, J. Lumin. 70, 294 (1996)

    Article  CAS  Google Scholar 

  18. L.H. Lin, X.Z. Sun, R. Tao, Z.C. Li, J.Y. Feng, Z.J. Zhang, J. Appl. Phys. 110, 073109 (2011)

    Article  Google Scholar 

  19. A. Najar, A.B. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat, T.K. Ng, B.S. Ooi, J. Appl. Phys. 112, 033502 (2012)

    Article  Google Scholar 

  20. L. Lin, S. Guo, X. Sun, J. Feng, Y. Wang, Nanoscale Res. Lett. 5, 1822 (2010)

    Article  CAS  Google Scholar 

  21. F. Boulitrop, A. Chenevas-Paule, D. Dunstan, Solid State Commun. 48, 181 (1983)

    Article  CAS  Google Scholar 

  22. A. Funde, N.A. Bakr, D. Kamble, R. Hawaldar, D. Amalnerkar, S. Jadkar, Sol. Energy Mater. Sol. Cells 92, 1217 (2008)

    Article  CAS  Google Scholar 

  23. A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Sol. Energy Mater. Sol. Cells 78, 469 (2003)

    Article  CAS  Google Scholar 

  24. M. Rossi, S. Salvatori, M. Burchielli, G. Conte, Thin Solid Films 383, 267 (2001)

    Article  CAS  Google Scholar 

  25. R. E. Schropp, M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology, Springer, 1998.

  26. P. Yang, X. Zeng, X. Xie, X. Zhang, H. Li, Z. Wang, RSC Advances 3, 24971 (2013)

    Article  CAS  Google Scholar 

  27. Q. Xue, Y. Bai, M. Liu, R. Xia, Z. Hu, Z. Chen, X.F. Jiang, F. Huang, S. Yang, Y. Matsuo, Adv. Energy Mater. 7, 1602333 (2017)

    Article  Google Scholar 

  28. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4, 96 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project under Grant No. TZ2016003-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Zeng, X. Effect of hydrogenated silicon film microstructure on the surface states of n-type silicon nanowires and solar cells. J Mater Sci: Mater Electron 32, 3066–3071 (2021). https://doi.org/10.1007/s10854-020-05056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05056-1

Navigation