Skip to main content
Log in

Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor is studied quantitatively. The azelaic acid is selected as formation solution in the multi-step anodization process, and boric acid is applied for comparison. The field-emission scanning electron microscopy and X-ray diffractometer technologies are used for observation of microstructure and detection of crystallinity, respectively. The electrical properties are tested by LCR meter and T–V tester. The microstructure observation shows that the ‘corn-flake’ structures are taken place by ‘cotton-ball’ ones gradually along with the preparation process, and such phenomenon is more obvious when azelaic acid is used. The pores area of anodic aluminum foil formed in azelaic acid is larger because of the stronger acidity. The formation with azelaic acid induces smaller thickness of oxide film, promotes the formation of crystalline oxide, therefore, a barrier film with higher crystallinity and larger grain size is obtained. The barrier film formed in azelaic acid shows larger specific capacitance, lower withstand voltage and larger leakage current, which needs the multi-step anodization for performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.S. Feng, J.J. Chen, C. Zhang, N. Zhao, Z. Liang, Ceram. Int. 38, 2501 (2012)

    Article  CAS  Google Scholar 

  2. F. Chen, S.S. Park, ECS J. Solid State Sc. 4, 293 (2015)

    Google Scholar 

  3. L. Xiang, S.S. Park, Key Eng. Mater. 737, 143 (2017)

    Article  Google Scholar 

  4. L. Liang, Y. He, H. Song, X. Yang, X. Cai, C. Xiong, Y. Li, Corros. Sci. 70, 180 (2013)

    Article  CAS  Google Scholar 

  5. L. Liang, Y. He, H. Song, X. Yang, X. Cai, Corros. Sci. 79, 21 (2014)

    Article  CAS  Google Scholar 

  6. G. Scaduto, M. Santamaria, P. Bocchetta, F. Di Quarto, Thin Solid Films 550, 128 (2014)

    Article  CAS  Google Scholar 

  7. H. Uchi, T. Kanno, R.S. Alwitt, J. Electrochem. Soc. 148, 17 (2001)

    Article  Google Scholar 

  8. J. Chang, C. Liao, C. Chen, W. Tsai, J. Power Sources 138, 301 (2004)

    Article  CAS  Google Scholar 

  9. A.C. Geiculescu, T.F. Strange, Thin Solid Films 503, 45 (2006)

    Article  CAS  Google Scholar 

  10. I. Vrublevsky, V. Parkoun, J. Schreckenbach, W.A. Goedel, Appl. Surf. Sci. 252, 5100 (2006)

    Article  CAS  Google Scholar 

  11. N. Hassanzadeh, H. Omidvar, M. Poorbafrani, S.H. Tabaian, Arab. J. Sci. Eng. 38, 1305 (2013)

    Article  CAS  Google Scholar 

  12. T. Kikuchi, T. Yamamoto, S. Natsui, R.O. Suzuki, Electrochim. Acta 123, 14 (2014)

    Article  CAS  Google Scholar 

  13. R.A. Mirzoev, A.D. Davydov, D.K. Kurmyalevskaya, A.N. Bazylyk, S.I. Vystupov, Electrochim. Acta 184, 214 (2015)

    Article  CAS  Google Scholar 

  14. J. Lee, J.Y. Kim, J.K. Kim, J.H. Lee, H.Y. Chung, Y.S. Tak, Corros. Sci. 51, 1501 (2009)

    Article  CAS  Google Scholar 

  15. H. Takahashi, M. Yamaki, R. Furuichi, Corros. Sci. 31, 243 (1990)

    Article  CAS  Google Scholar 

  16. C. Ban, Y. He, X. Shao, T. Nonferr, Metal. Soc. 21, 133 (2011)

    CAS  Google Scholar 

  17. C. Ban, Y. He, X. Shao, J. Mater. Sci. Mater. El. 24, 3442 (2013)

    Article  CAS  Google Scholar 

  18. M. Sepúlveda, J.G. Castaño, F. Echeverría, Appl. Surf. Sci. 454, 210 (2018)

    Article  Google Scholar 

  19. A.C. Geiculescu, T.F. Strange, Thin Solid Films 445, 105 (2003)

    Article  CAS  Google Scholar 

  20. S. Pan, L. Liang, B. Lu, H. Li, J. Alloy. Compd. 823, 153795 (2020)

    Article  CAS  Google Scholar 

  21. C. Ban, F. Wang, J. Chen, Z. Liu, J. Mater. Sci.-Mater. El. 29, 16166 (2018)

    Article  CAS  Google Scholar 

  22. R.S. Alwitt, C.K. Dyer, Electrochim. Acta 23, 355 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project fund by China Postdoctoral Science Foundation (2019M663871XB), Postdoctoral Science Foundation of Guangxi Province of China, the Major scientific and technological projects of Guangxi Province of China (AA17202004), and the Innovation-driven Development Project of Hezhou City (ZX1907001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sining Pan or Libo Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Liang, L., Lu, B. et al. Effect of azelaic acid on microstructure evolution and electrical properties of anodic aluminum foil for electrolytic capacitor. J Mater Sci: Mater Electron 32, 2579–2589 (2021). https://doi.org/10.1007/s10854-020-05025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05025-8

Navigation