Skip to main content

Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites

Abstract

Polycrystalline Ni0.3Cu0.2Zn0.5Fe2O4 and Ni0.3Cu0.2Zn0.5Sc0.05Fe1.95O4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological, magnetic, dielectric, and electrical properties of these spinel ferrites has been studied thoroughly and comparatively. Formation of the single-phase cubic spinel structure of these compositions is confirmed by X-ray diffraction analysis. The lattice constant increases with sintering temperature as well as with 5% scandium (Sc3+) doping in Ni–Cu–Zn ferrite. Surface morphology reveals that the grain size increases with sintering temperature. Among the prepared ferrites, Ni0.3Cu0.2Zn0.5Sc0.05Fe1.95O4 has the maximum density (5.05 × 103 kg/m3) at sintering temperature 1150 °C, which gives the highest value of initial permeability. It is observed that initial permeability varies with sintering temperature, and it gives the maximum value at optimum sintering temperature. It is noted that Curie temperature decreases with 5% Sc3+ ions doping, whereas it slightly increases with increasing sintering temperature for both compositions. Ni0.3Cu0.2Zn0.5Fe2O4 compound shows the highest Curie temperature 418 °C. Dielectric constant, dielectric loss factor and AC electrical conductivity decrease with 5% Sc3+ ions doping in Ni–Cu–Zn ferrite. The initial permeability decreases sharply at Curie temperature, which indicates a high degree of compositional homogeneity. The ‘Hopkinson’ peak is observed just below the Curie temperature in the real part of initial permeability versus temperature graphs. The mechanism of dielectric polarization and electrical conductivity has been explained based on the electron hopping between Fe3+ and Fe2+ ions. The variation trend of complex impedance and AC electrical conductivity reveals the semiconducting behavior of the ferrite samples. Formation of partial semicircles in the Z/-axis indicates that relaxation process is non-Debye type. The investigated ferrites show relatively high initial permeability, low magnetic loss, and low electrical conductivity in a wide frequency range, which make them potential candidate for various practical applications such as small and compact power suppliers for computers, microprocessors, microwave electronic devices, etc.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data are a part of the ongoing studies. Partial data can be shared upon request. Reagent-grade powders of CuO (≥ 99.9%), NiO (≥ 99.9%), ZnO (≥ 99.9%), Fe2O3 (≥ 99.9%), and Sc2O3 (≥ 99.99%) were used to prepare the proposed ferrites. All the raw oxides have been procured from Sigma Aldrich, Germany.

References

  1. 1.

    A. Namai, M. Yoshikiyo, K. Yamada et al., Hard magnetic ferrite with a gigantic coercivity and high frequency millimeter wave rotation. Nat. Commun. 3(1035), 1–6 (2012). https://doi.org/10.1038/ncomms2038

    Article  Google Scholar 

  2. 2.

    A.K.M. Akther Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Taba, Structural, electrical transport, and magnetic properties of Ni1xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007). https://doi.org/10.1016/j.jmmm.2006.09.030

    CAS  Article  Google Scholar 

  3. 3.

    B.C. Das, F. Alam, A.K.M. Akther Hossain, The crystallographic, magnetic, and electrical properties of Gd3+ substituted Ni–Cu–Zn mixed ferrites. J. Phys. Chem. Solids (2020). https://doi.org/10.1016/j.jpcs.2020.109433

    Article  Google Scholar 

  4. 4.

    S.T. Assar, H.F. Abosheiasha, A.R. El Sayed, Effect of γ-rays irradiation on structural, magnetic, and electrical properties of Mg–Cu–Zn and Ni–Cu–Zn ferrites. J. Magn. Magn. Mater. 421, 355–367 (2017). https://doi.org/10.1016/j.jmmm.2016.08.028

    CAS  Article  Google Scholar 

  5. 5.

    P. Lathiya, M. Kreuzer, J. Wang, RF complex permeability spectra of Ni–Cu–Zn ferrites prepared under different applied hydraulic pressures and durations for wireless power transfer (WPT) applications. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166273

    Article  Google Scholar 

  6. 6.

    J. Xiang, X. Shen, F. Song, M. Liu, One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183, 1239–1244 (2010). https://doi.org/10.1016/j.jssc.2010.03.041

    CAS  Article  Google Scholar 

  7. 7.

    M.C. Dimri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. Mater. Sci. Eng. B 133, 42–48 (2006). https://doi.org/10.1016/j.mseb.2006.04.043

    CAS  Article  Google Scholar 

  8. 8.

    M.H. Rashid, A.K.M. Akther Hossain, Structural, morphological and electromagnetic properties of Sc3+ doped Ni–Cu–Zn ferrites. Results Phys. 11, 888–895 (2018). https://doi.org/10.1016/j.rinp.2018.10.050

    Article  Google Scholar 

  9. 9.

    B. Parvatheeswara Rao, K.H. Rao, Direct current resistivity studies of various polycrystalline Ni–Zn–Sc ferrites. J. Appl. Phys. 80, 6804–6808 (1996). https://doi.org/10.1063/1.363808

    CAS  Article  Google Scholar 

  10. 10.

    A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017). https://doi.org/10.1016/j.jmmm.2016.09.029

    CAS  Article  Google Scholar 

  11. 11.

    M.A. Almessiere, Y. Slimani, H. Gungunes, V.G. Kostishyn, S.V. Trukhanov, A.V. Trukhanov, A. Baykal, Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46(8), 11124–11131 (2020). https://doi.org/10.1016/j.ceramint.2020.01.132

    CAS  Article  Google Scholar 

  12. 12.

    A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, Magnetic properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 92, 3872–3876 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya et al., Structural, electrical and magnetic properties of Sc3+ doped Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017). https://doi.org/10.1016/j.jmmm.2016.10.050

    CAS  Article  Google Scholar 

  14. 14.

    N. Rezlescu, E. Rezlescu, P.D. Popa, C. Doroftei, M. Ignat, Scandium substituted nickel-cobalt ferrite nanoparticles for catalyst applications. Appl. Catal. B 158–159, 70–75 (2014). https://doi.org/10.1016/j.apcatb.2014.03.052

    CAS  Article  Google Scholar 

  15. 15.

    J.B. Nelson, D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160–177 (1945). https://doi.org/10.1088/0959-5309/57/3/302

    CAS  Article  Google Scholar 

  16. 16.

    M.H. Rashid, J. Rabeya, M.H. Doha, O. Islam, P. Reith, G. Hopman, H. Hilgenkamp, Characterization of single step electrodeposited Cu2ZnSnS4 thin films. J. Opt. 47, 256–262 (2018). https://doi.org/10.1007/s12596-018-0463-0

    Article  Google Scholar 

  17. 17.

    E.H. El-Ghazzawy, M.A. Amer, Structural, elastic and magnetic studies of the as-synthesized Co1xSrxFe2O4 nanoparticles. J. Alloys Compd. 690, 293–303 (2017). https://doi.org/10.1016/j.jallcom.2016.08.135

    CAS  Article  Google Scholar 

  18. 18.

    M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443–446 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb11975.x

    CAS  Article  Google Scholar 

  19. 19.

    S. Shanmugam, B. Subramanian, Evolution of phase pure magnetic cobalt ferrite nanoparticles by varying the synthesis conditions of polyol method. Mater. Sci. Eng. B (2020). https://doi.org/10.1016/j.mseb.2019.114451

    Article  Google Scholar 

  20. 20.

    R. Dou, H. Cheng, J. Ma, S. Komarneni, Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122181

    Article  Google Scholar 

  21. 21.

    R. Singh Yadav, I. Kuritka, J. Vilcakova, T. Jamatia, M. Machovsky et al., Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrasonics Sonochem. (2020). https://doi.org/10.1016/j.ultsonch.2019.104839

    Article  Google Scholar 

  22. 22.

    L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik. 5, 17–26 (1921). https://doi.org/10.1007/BF01349680

    CAS  Article  Google Scholar 

  23. 23.

    M.D. Rahaman, T. Nusrat, R. Maleque, A.K.M. Akther Hossain, Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5xSrxFe2O4 ferrites. J. Magn. Magn. Mater. 451, 391–406 (2018). https://doi.org/10.1016/j.jmmm.2017.11.066

    CAS  Article  Google Scholar 

  24. 24.

    F.L. Zabotto, A.J. Gualdi, A.J.A. de Oliveira, J.A. Eiras, D. Garcia, Effect of ferrite concentration on dielectric and magnetoelectric properties in (1–x)Pb(Mg1/3Nb2/3)0.68Ti0.32O3 + (x)CoFe2O4 particulate composites. J. Ferroelectr. 428, 122–128 (2012). https://doi.org/10.1080/00150193.2012.674434

    CAS  Article  Google Scholar 

  25. 25.

    Z. Pedzich, M.M. Bucko, M. Krolikowski, M. Bakalrska, J. Babiaz, Microstructure and properties of Mg–Zn ferrite as a result of sintering temperature. J. Eur. Ceram. Soc. 24, 1053 (2004). https://doi.org/10.1016/S0955-2219(03)00386-8

    CAS  Article  Google Scholar 

  26. 26.

    A. Loganathan, K. Kumar, Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures. Appl. Nanosci. 6, 629–639 (2016). https://doi.org/10.1007/s13204-015-0480-0

    CAS  Article  Google Scholar 

  27. 27.

    M.F. Al-Hilli, S. Li, K.S. Kassim, Gadolinium substitution and sintering temperature dependent electronic properties of Li–Ni ferrite. Mater. Chem. Phys. 128, 127–132 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.064

    CAS  Article  Google Scholar 

  28. 28.

    M.D. Rahaman, K.K. Nahar, M.N.I. Khan, A.K.M. Akther Hossain, Synthesis, structural, and electromagnetic properties of Mn0.5Zn0.5xMgxFe2O4 (x = 0.0, 0.1) polycrystalline ferrites. Phys. B 481, 156–164 (2016). https://doi.org/10.1016/j.physb.2015.11.008

    CAS  Article  Google Scholar 

  29. 29.

    A. Globus, P. Duplex, M. Guyot, Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans. Magn. 7, 617–622 (1971). https://doi.org/10.1109/TMAG.1971.1067200

    CAS  Article  Google Scholar 

  30. 30.

    M.D. Rahaman, M. Dalim Mia, M.N.I. Khan, A.K.M. Akther Hossain, Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016). https://doi.org/10.1016/j.jmmm.2015.12.029

    CAS  Article  Google Scholar 

  31. 31.

    N. Bloembergen, Magnetic resonance in ferrites. Proc. IRE. 44, 1259–1269 (1956). https://doi.org/10.1109/JRPROC.1956.274949

    CAS  Article  Google Scholar 

  32. 32.

    J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica 14, 207–217 (1948). https://doi.org/10.1016/0031-8914(48)90038-X

    CAS  Article  Google Scholar 

  33. 33.

    K. Overshott, The causes of the anomalous loss in amorphous ribbon materials. IEEE Trans. Magn. 17, 2698–2700 (1981). https://doi.org/10.1109/TMAG.1981.1061648

    Article  Google Scholar 

  34. 34.

    E. Cedillo, J. Ocampo, V. Rivera, R. Valenzuela, An apparatus for the measurement of initial magnetic permeability as a function of temperature. J. Phys. E 13, 383–386 (1980). https://doi.org/10.1088/0022-3735/13/4/005

    CAS  Article  Google Scholar 

  35. 35.

    M. Louis Néel, Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 12, 137–198 (1948). https://doi.org/10.1051/anphys/194812030137

    Article  Google Scholar 

  36. 36.

    L.R. Maxwell, S.J. Pickart, Magnetic and crystalline behavior of certain oxide systems with spinel and perovskite structures. Phys. Rev. 96, 1501–1505 (1954). https://doi.org/10.1103/PhysRev.96.1501

    CAS  Article  Google Scholar 

  37. 37.

    B. Parvatheeswara Rao, P.S.V. Subba Rao, K.H. Rao, X-ray and magnetic studies of scandium substituted Ni–Zn ferrites. IEEE Trans. Magn. 33, 4454–4458 (1997). https://doi.org/10.1109/20.649881

    Article  Google Scholar 

  38. 38.

    R. Valenzuela, Magnetic Ceramics. (Cambridge University Press, Cambridge, 1994). www.cambridge.org/9780521364850.

  39. 39.

    E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  40. 40.

    M. Kamran, M. Anis-ur-Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153583

    Article  Google Scholar 

  41. 41.

    N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi (a) 23, 575 (1974). https://doi.org/10.1002/pssa.2210230229

    CAS  Article  Google Scholar 

  42. 42.

    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    CAS  Article  Google Scholar 

  43. 43.

    S. Ul Haque, K. Kumar Saikia, G. Murugesan, S. Kalainathan, A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite. J. Alloys Compd. 701, 612–618 (2017). https://doi.org/10.1016/j.jallcom.2016.11.309

    CAS  Article  Google Scholar 

  44. 44.

    A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014). https://doi.org/10.1016/j.jmmm.2013.11.052

    CAS  Article  Google Scholar 

  45. 45.

    M.H. Rashid, Investigation of structural, morphological and electromagnetic properties of scandium doped nickel-copper-zinc ferrites. M. Phil thesis, Bangladesh University of Engineering and Technology, Bangladesh. 2019. pp. 77–79. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/5458.

  46. 46.

    A. ur Rahman, M.A. Rafiq, S. Karim, K. Maaz, M. Siddique, M.M. Hasan, Reduced conductivity and enhancement of Debye orientation polarization in lanthanum doped cobalt ferrite nanoparticles. Phys. B 406, 4393–4399 (2011). https://doi.org/10.1016/j.physb.2011.08.094

    CAS  Article  Google Scholar 

  47. 47.

    N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behaviour and magnetic properties of Mg substituted Ni-Li ferrites. J. Alloys Compd. 509, 7543–7548 (2011). https://doi.org/10.1016/j.jallcom.2011.04.126

    CAS  Article  Google Scholar 

  48. 48.

    A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, D.R. Mane, A.R. Shitre, Frequency and temperature dependent electrical properties of Ni0.7Zn0.3CrxFe2xO4 (0 ≤ x ≤ 0.5). Ceram. Int. 38, 2963–2970 (2012). https://doi.org/10.1016/j.ceramint.2011.11.074

    CAS  Article  Google Scholar 

  49. 49.

    A.M. Shaikh, S.S. Bellad, B.K. Chougule, Temperature and frequency-dependent dielectric properties of Zn substituted Li-Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999). https://doi.org/10.1016/S0304-8853(99)00138-9

    CAS  Article  Google Scholar 

  50. 50.

    M. Abdullah Dar, K. Majid, K. Mujasam Batoo, R.K. Kotnala, Dielectric and impedance study of polycrystalline Li0.350.5xCd0.3NixFe2.350.5xO4 ferrites synthesized via a citrate-gel auto combustion method. J. Alloys Compd. 632, 307–320 (2015). https://doi.org/10.1016/j.jallcom.2015.01.190

    CAS  Article  Google Scholar 

  51. 51.

    K. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    CAS  Article  Google Scholar 

  52. 52.

    M. Nazrul Islam, A.K.M. Akther Hossain, Enhancement of Neel temperature and electrical resistivity of Mn–Ni–Zn ferrites by Gd3+ substitution. J. Mater. Res. Technol. 8(1), 208–216 (2019). https://doi.org/10.1016/j.jmrt.2017.11.006

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Md. Harun-Or-Rashid is grateful to the Solid-State Physics Laboratory of Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh for allowing to do this research. This research is financially supported by Bangladesh University of Textiles (BUTEX), Dhaka, Bangladesh (Code-3632104, FY 2019-2020, S/N 14, 01.10.2019).

Funding

This research is financially supported by Bangladesh University of Textiles (BUTEX), Dhaka, Bangladesh (Code-3632104, FY 2019-2020, S/N 14, 01.10.2019).

Author information

Affiliations

Authors

Contributions

MH-O-R: conceptualization, funding acquisition, data curation, formal analysis, investigation, visualization, writing—review and editing. MNI: formal analysis, writing—review and editing. MA: formal analysis, writing—review and editing. AKMAH: lab facilities, overall supervision.

Corresponding author

Correspondence to Md. Harun-Or-Rashid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Also there is no conflict of interest for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harun-Or-Rashid, M., Islam, M.N., Arifuzzaman, M. et al. Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites. J Mater Sci: Mater Electron 32, 2505–2523 (2021). https://doi.org/10.1007/s10854-020-05018-7

Download citation