Skip to main content
Log in

TiO2–ZnO composites fabricated via sonication assisted with gelatin for potential use in Rhodamine B degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herewith we report a facile synthesis of zinc oxide doped with (5, 10, 15 and 20 wt%) titanium oxide nanocomposites in gelatin under ultra-sonication. The X-ray diffraction (XRD) data revealed the ZnO formation in addition to a rutile TiO2 phase. The ZnO phase size decreased, while the rutile TiO2 phase increased with a TiO2 loading increment. The scanning electron microscopy (SEM) displayed a combination of spherical and hexagonal particles with 60–80 nm size distribution. The photocatalytic activity of the prepared nanostructures was assisted using Rhodamine B dye, where they showed enhanced photodegradation competence under visible light irradiation. The kinetics of photodegradation followed the first-order kinetics with the 20%wt sample showing the maximum activity. The mechanistic investigation revealed the dominance of h+ and ·O2 species during the dye photodegradation. The results indicate the potential application of such gelatin-stabilized nanostructures for dye illumination from aqueous solutions under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figs. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.T. Arul et al., Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloys Compd. 720, 395–400 (2017)

    Google Scholar 

  2. G. Armstrong, An introduction to polymer nanocomposites. Eur. J. Phys. 36(6), 063001 (2015)

    Google Scholar 

  3. P. Sundarrajan et al., One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull. Korean Chem. Soc. 33(10), 3218–3224 (2012)

    CAS  Google Scholar 

  4. K. Goda et al., Advances in polymer composites: biocomposites–state of the art, new challenges, and opportunities, in polymer composites. ed. by S. Thomas, K. Joseph, S.K. Malhotra (Wiley, Hoboken, 2014)

    Google Scholar 

  5. L.P. Bauermann et al., Heterogeneous nucleation of ZnO using gelatin as the organic matrix. Chem. Mater. 18(8), 2016–2020 (2006)

    Google Scholar 

  6. Y.-H. Tseng et al., Biomimetic synthesis of nacrelike faceted mesocrystals of ZnO− gelatin composite. J. Phys. Chem. C 113(42), 18053–18061 (2009)

    CAS  Google Scholar 

  7. S. Parani, K. Pandian, O.S. Oluwafemi, Gelatin stabilization of quantum dots for improved stability and biocompatibility. Int. J. Biol. Macromol. 107, 635–641 (2018)

    CAS  Google Scholar 

  8. D. Zhang, H. Yang, Gelatin-stabilized copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Phys. B 415, 44–48 (2013)

    CAS  Google Scholar 

  9. A.K. Zak et al., Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett. 65(1), 70–73 (2011)

    CAS  Google Scholar 

  10. R.S. Hyam et al., Room temperature synthesis of rutile TiO2 hierarchical nanoneedle flower morphology for dye sensitized solar cell. J. Nanosci. Nanotechnol. 10(9), 5894–5898 (2010)

    CAS  Google Scholar 

  11. A. Modwi et al., Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mol. Struct. 1173, 1–6 (2018)

    CAS  Google Scholar 

  12. N. Rajkumar, S. Kanmani, K. Ramachandran, Performance of dye-sensitized solar cell based on TiO2: ZnO nanocomposites. Adv. Sci. Lett. 4(2), 627–633 (2011)

    CAS  Google Scholar 

  13. P. Vlazan et al., Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method. Mater. Charact. 101, 153–158 (2015)

    CAS  Google Scholar 

  14. V. Shanmugam et al., Fabrication of heterostructured vanadium modified g-C3N4/TiO2 hybrid photocatalyst for improved photocatalytic performance under visible light exposure and antibacterial activities. J. Ind. Eng. Chem. 76, 318–332 (2019)

    CAS  Google Scholar 

  15. S.A. Hassan, R.A. El-Salamony, Photocatalytic disc-shaped composite systems for removal of hazardous dyes in aqueous solutions. Can. Chem. Trans. 2, 57–71 (2014)

    Google Scholar 

  16. V. Shanmugam et al., Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible-light-driven photocatalytic activity and inactivation of bacterias. Arab. J. Chem. 13(1), 2439–2455 (2020)

    CAS  Google Scholar 

  17. G. Marci et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization. J. Phys. Chem. B 105(5), 1026–1032 (2001)

    CAS  Google Scholar 

  18. V. Kandavelu, H. Kastien, K.R. Thampi, Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B 48(2), 101–111 (2004)

    CAS  Google Scholar 

  19. P. Prasannalakshmi, N. Shanmugam, Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 61, 114–124 (2017)

    CAS  Google Scholar 

  20. M. Pérez-González et al., Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process. Thin Solid Films 594, 304–309 (2015)

    Google Scholar 

  21. C.C. Pei, W.W.-F. Leung, Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation. Sep. Purif. Technol. 114, 108–116 (2013)

    CAS  Google Scholar 

  22. A.E. Shalan et al., Concordantly fabricated heterojunction ZnO–TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells. RSC Adv. 5(125), 103095–103104 (2015)

    CAS  Google Scholar 

  23. N.A. Abd Samad et al., Efficient solar-induced photoelectrochemical response using coupling semiconductor TiO2–ZnO nanorod film. Materials 9(11), 937 (2016)

    Google Scholar 

  24. S.-S. Lin, J.-L. Huang, D.-F. Lii, The effect of thickness on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Surf. Coat. Technol. 190(2–3), 372–377 (2005)

    CAS  Google Scholar 

  25. T.H. Won et al., Investigation on sensing properties of ZnO-based thin film sensors for trimethylamine gas. Sens. Mater. 11(5), 257–267 (1999)

    Google Scholar 

  26. C. Wang et al., Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J. Solid State Chem. 178(11), 3500–3506 (2005)

    CAS  Google Scholar 

  27. W. Wu et al., Preparation and properties of composite particles made by nano zinc oxide coated with titanium dioxide. J. Mater. Sci. 41(18), 5845–5850 (2006)

    CAS  Google Scholar 

  28. W.-P. Tai, J.-G. Kim, J.-H. Oh, Humidity sensitive properties of nanostructured Al-doped ZnO: TiO2 thin films. Sens. Actuators B 96(3), 477–481 (2003)

    CAS  Google Scholar 

  29. D. Barreca et al., First example of ZnO−TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chem. Mater. 19(23), 5642–5649 (2007)

    CAS  Google Scholar 

  30. V. Houšková et al., Photoactive materials prepared by homogeneous hydrolysis with thioacetamide: part 2—TiO2/ZnO nanocomposites. J. Phys. Chem. Solids 69(7), 1623–1631 (2008)

    Google Scholar 

  31. O. Lyckfeldt, J. Brandt, S. Lesca, Protein forming—a novel shaping technique for ceramics. J. Eur. Ceram. Soc. 20(14–15), 2551–2559 (2000)

    CAS  Google Scholar 

  32. S. Dhara, P. Bhargava, Egg white as an environmentally friendly low-cost binder for gelcasting of ceramics. J. Am. Ceram. Soc. 84(12), 3048–3050 (2001)

    CAS  Google Scholar 

  33. K.K. Taha et al., Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J. Photochem. Photobiol. A 390, 112263 (2020)

    CAS  Google Scholar 

  34. T. Munawar et al., Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. 46, 11101–11114 (2020)

    CAS  Google Scholar 

  35. T. Siva Vijayakumar et al., Synthesis of silver-doped zinc oxide nanocomposite by pulse mode ultrasonication and its characterization studies. J. Nanosci. 2013, 1–7 (2013)

    Google Scholar 

  36. R. Verma, J. Gangwar, A.K. Srivastava, Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 7(70), 44199–44224 (2017)

    CAS  Google Scholar 

  37. Q. Gao, X. Wu, Y. Fan, The effect of iron ions on the anatase–rutile phase transformation of titania (TiO2) in mica–titania pigments. Dyes Pigm. 95(1), 96–101 (2012)

    CAS  Google Scholar 

  38. K. Prasad et al., Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason. Sonochem. 17(4), 697–703 (2010)

    CAS  Google Scholar 

  39. C. Bueno et al., High-yield growth of Ti doped ZnO nano-and microstructures by a vapor-solid method. J. Alloys Compd. 726, 201–208 (2017)

    CAS  Google Scholar 

  40. S.A. Bidier et al., Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition. Physica E 88, 169–173 (2017)

    CAS  Google Scholar 

  41. A. Modwi et al., Influence of annealing temperature on the properties of ZnO synthesized via 2.3. Dihydroxysuccinic acid using flash sol-gel method. J. Ovonic Res. 12(2), 59–66 (2016)

    CAS  Google Scholar 

  42. N.H. Jadhav et al., Ti (IV) doping: an effective strategy to boost Lewis acidic performance of ZnO catalyst in fluorescein dye synthesis. Catal. Commun. 120, 17–22 (2019)

    CAS  Google Scholar 

  43. S. Muthukumaran, Effect of solvents on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles. J. Mater. Sci.: Mater. Electron. 24(10), 4050–4059 (2013)

    Google Scholar 

  44. O. Lupan et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256(6), 1895–1907 (2010)

    CAS  Google Scholar 

  45. A. Modwi et al., Structural, surface area and FTIR characterization of Zn0.95–xCu0.05Fe0.0xO nanocomposites prepared via sol–gel method. J. Mater. Sci.: Mater. Electron. 29(3), 2184–2192 (2018)

    CAS  Google Scholar 

  46. Z. Zhong, T. Zhang, Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering. Mater. Lett. 96, 237–239 (2013)

    CAS  Google Scholar 

  47. H. Chen et al., Optical properties of Ti-doped ZnO films synthesized via magnetron sputtering. J. Alloys Compd. 534, 59–63 (2012)

    CAS  Google Scholar 

  48. X. Bokhimi, A. Morales, F. Pedraza, Crystallography and crystallite morphology of rutile synthesized at low temperature. J. Solid State Chem. 169(2), 176–181 (2002)

    CAS  Google Scholar 

  49. P. Banerjee et al., Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 108(4), 043504 (2010)

    Google Scholar 

  50. S.-J. Liu et al., Mesocrystals of rutile TiO2: mesoscale transformation, crystallization, and growth by a biologic molecules-assisted hydrothermal process. Cryst. Growth Des. 9(1), 203–209 (2009)

    CAS  Google Scholar 

  51. Y.-G. Shul et al., Effect of organic additive on the preparation of rutile TiO2 by steam treatment. J. Sol-Gel Sci. Technol. 8(1–3), 255–259 (1997)

    CAS  Google Scholar 

  52. M. Darroudi et al., Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int. J. Nanomed. 6, 569 (2011)

    CAS  Google Scholar 

  53. K.A. Farrell, Synthesis effects on grain size and phase content in the anatase-rutile TiO2 system. Masters Theses (AllTheses, All Years). 937. (1999). https://digitalcommons.wpi.edu/etd-theses/937

  54. W. Li et al., Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4(70), 36959–36966 (2014)

    CAS  Google Scholar 

  55. J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory (Elsevier, Amsterdam, 2006).

    Google Scholar 

  56. P. Mercera et al., Zirconia as a support for catalysts: evolution of the texture and structure on calcination in air. Appl. Catal. 57(1), 127–148 (1990)

    CAS  Google Scholar 

  57. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    CAS  Google Scholar 

  58. B.K. Pradhan, N. Sandle, Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37(8), 1323–1332 (1999)

    CAS  Google Scholar 

  59. D. Fattakhova-Rohlfing, A. Zaleska, T. Bein, Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 114(19), 9487–9558 (2014)

    CAS  Google Scholar 

  60. J. Richardson, Y. Peng, D. Remue, Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. A 204(1), 19–32 (2000)

    CAS  Google Scholar 

  61. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    CAS  Google Scholar 

  62. A. Modwi et al., Effect of annealing on physicochemical and photocatalytic activity of Cu 5% loading on ZnO synthesized by sol–gel method. J. Mater. Sci.: Mater. Electron. 27(12), 12974–12984 (2016)

    CAS  Google Scholar 

  63. Z. Han et al., Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl. Catal. B 126, 298–305 (2012)

    CAS  Google Scholar 

  64. S. Wang et al., Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale 4(19), 5895–5901 (2012)

    CAS  Google Scholar 

  65. Y.-M. Lu et al., Improving the conductance of ZnO thin films by doping with Ti. Thin Solid Films 447, 56–60 (2004)

    Google Scholar 

  66. M.-C. Jun, S.-U. Park, J.-H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 7(1), 639 (2012)

    Google Scholar 

  67. H. Benzarouk et al., Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP). Superlattices Microstruct. 52(3), 594–604 (2012)

    CAS  Google Scholar 

  68. Z.-Y. Ye et al., Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 108 (2013)

    Google Scholar 

  69. M. Naeem et al., Study of active surface defects in Ti doped ZnO nanoparticles. J. Appl. Phys. 107(12), 124303 (2010)

    Google Scholar 

  70. R.A. Mauricio-Sánchez et al., FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vib. Spectrosc. 94, 1–6 (2018)

    Google Scholar 

  71. S. Moradi et al., The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. J. Saudi Chem. Soc. 20(4), 373–378 (2016)

    CAS  Google Scholar 

  72. B. Sava et al., Structural characterization of the sol–gel oxide powders from the ZnO–TiO2–SiO2 system. Superlattices Microstruct. 42(1–6), 314–321 (2007)

    CAS  Google Scholar 

  73. K. Karthik, S.K. Pandian, N.V. Jaya, Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method. Appl. Surf. Sci. 256(22), 6829–6833 (2010)

    CAS  Google Scholar 

  74. R. Saravanan et al., Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014)

    CAS  Google Scholar 

  75. Y. Wang et al., Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl. Mater. Interfaces 7(11), 6093–6101 (2015)

    CAS  Google Scholar 

  76. Z. He et al., Increasing the catalytic activities of iodine doped titanium dioxide by modifying with tin dioxide for the photodegradation of 2-chlorophenol under visible light irradiation. J. Hazard. Mater. 189(1–2), 595–602 (2011)

    CAS  Google Scholar 

  77. M. Abdel-Messih, M. Ahmed, A.S. El-Sayed, Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. J. Photochem. Photobiol. A 260, 1–8 (2013)

    CAS  Google Scholar 

  78. M. Hidalgo et al., Comparative determination of photodegradation kinetics of quinolones. J. Photochem. Photobiol. A 73(2), 135–138 (1993)

    CAS  Google Scholar 

  79. S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3–Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron. 29(13), 10784–10801 (2018)

    CAS  Google Scholar 

  80. H. Zhang, R. Zong, Y. Zhu, Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J. Phys. Chem. C 113(11), 4605–4611 (2009)

    CAS  Google Scholar 

  81. J. Lv et al., Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 178, 6–17 (2017)

    CAS  Google Scholar 

  82. A. Kadam et al., Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. 61, 78–86 (2018)

    CAS  Google Scholar 

  83. A.R. Upreti et al., Efficient visible light photocatalytic degradation of 17α-ethinyl estradiol by a multifunctional Ag–AgCl/ZnFe2O4 magnetic nanocomposite. RSC Adv. 6(39), 32761–32769 (2016)

    CAS  Google Scholar 

  84. J. Wang et al., Graphene oxide as solid-state electron mediator enhanced photocatalytic activities of GO-Ag3PO4/Bi2O3 Z-scheme photocatalyst efficiently by visible-light driven. Mater. Technol. 33(6), 421–432 (2018)

    CAS  Google Scholar 

  85. G. Wu, W. Xing, Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater. Technol. 34, 292–300 (2018)

    Google Scholar 

  86. A. Houas et al., Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31(2), 145–157 (2001)

    CAS  Google Scholar 

  87. F. Chen, J. Zhao, H. Hidaka, Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy (2003). https://doi.org/10.1155/S1110662X03000345

    Article  Google Scholar 

  88. T. Wu et al., Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102(30), 5845–5851 (1998)

    CAS  Google Scholar 

  89. J. Lv et al., Controlled deposition and enhanced visible light photocatalytic performance of Pt-modified TiO2 nanotube arrays. Appl. Surf. Sci. 351, 225–231 (2015)

    CAS  Google Scholar 

  90. H. Liang et al., Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl. Surf. Sci. 422, 1–10 (2017)

    CAS  Google Scholar 

  91. L. Li et al., Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids Surf. A 457, 134–141 (2014)

    CAS  Google Scholar 

  92. P. Nuengmatcha et al., Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J. Environ. Chem. Eng. 4(2), 2170–2177 (2016)

    CAS  Google Scholar 

  93. C.H. Nguyen et al., Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 232, 115962 (2020)

    CAS  Google Scholar 

  94. R. Qin et al., Fabrication and enhanced photocatalytic property of TiO2–ZnO composite photocatalysts. Mater. Lett. 240, 84–87 (2019)

    CAS  Google Scholar 

  95. M.H. Ali, A.D. Al-Afify, M.E. Goher, Preparation and characterization of graphene–TiO2 nanocomposite for enhanced photodegradation of Rhodamine-B dye. Egypt. J. Aquat. Res. 44(4), 263–270 (2018)

    Google Scholar 

  96. M.A. Golsefidi et al., Hydrothermal method for synthesizing ZnFe2O4 nanoparticles, photo-degradation of Rhodamine B by ZnFe2O4 and thermal stable PS-based nanocomposite. J. Mater. Sci.: Mater. Electron. 27(8), 8654–8660 (2016)

    CAS  Google Scholar 

  97. M.A. Golsefidi, M.F. Ramandi, M.A.K. Shahkooie, Facile synthesis of CdTe nanoparticles and photo-degradation of Rhodamine B and methyl orange. J. Mater. Sci.: Mater. Electron. 27(11), 12100–12105 (2016)

    CAS  Google Scholar 

  98. Q.I. Rahman, M. Ahmad, S. Mehta, Hydrothermal synthesis of Cr-doped SrTiO3 nanoparticles for rhodamine-B dye degradation under visible light illumination. Colloid Polym. Sci. 295(5), 933–937 (2017)

    CAS  Google Scholar 

  99. M. Saeed et al., Ag@ MnxOy: an effective catalyst for photo-degradation of rhodamine B dye. Environ. Chem. Lett. 16(1), 287–294 (2018)

    CAS  Google Scholar 

  100. T.H. Kim et al., Sonochemical synthesis of Fe–TiO2–SiC composite for degradation of rhodamine B under solar simulator. Res. Chem. Intermed. 40(4), 1595–1605 (2014)

    CAS  Google Scholar 

  101. L. Song, Y. Li, S. Zhang, Sonocatalytic degradation of rhodamine B in presence of CdS. Environ. Sci. Pollut. Res. 25(11), 10714–10719 (2018)

    CAS  Google Scholar 

  102. P. Ranjan et al., Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Mater. Chem. Phys. 226, 350–355 (2019)

    CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number 510.

Funding

Funding was provided by Scientific Research Foundation for Returned Scholars of Ministry of Education (CN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Taha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghan, A., Taha, K.K. & Modwi, A. TiO2–ZnO composites fabricated via sonication assisted with gelatin for potential use in Rhodamine B degradation. J Mater Sci: Mater Electron 32, 2471–2485 (2021). https://doi.org/10.1007/s10854-020-05013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05013-y

Navigation