Skip to main content
Log in

Hydrothermally prepared nickel disulphide nanoparticles with enhanced areal capacitance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, mesoporous nickel disulphide (NiS2) nano-particles have been successfully prepared using hydrothermal method. Phase formation and functional groups were identified by the high-resolution X-ray diffractometer (HR-XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Energy band gap of prepared NiS2 nanoparticles has been studied by diffuse reflectance spectroscopy. FESEM and N2 adsorption–desorption analysis affirmed that surface of the NiS2 nanoparticles is rough with large pore diameter 6.46 nm. Electro-catalytic properties of NiS2 have been analysed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry technique in 1 M aqueous LiOH electrolyte. Electrochemical characterization affirmed that NiS2 has minimum charge transfer resistance (Rct) value of 3.84 Ω with enhanced areal capacitance 9.23 F cm−2 which showed 87% cyclic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    CAS  Google Scholar 

  2. Z. Wan, C. Jia, Y. Wang, In situ growth of hierarchical NiS2 hollow microspheres as efficient counter electrode for dye-sensitized solar cell. Nanoscale 7, 12737–12742 (2015)

    CAS  Google Scholar 

  3. E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv. 7, 28234–28290 (2017)

    CAS  Google Scholar 

  4. Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28, 065406 (2017)

    Google Scholar 

  5. H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4(8), 2630–2637 (2011)

    CAS  Google Scholar 

  6. W. Zhang, Y. Wang, Z. Wang, Z. Zhong, Highly efficient and noble metal-free NiS/CdS photocatalysts for H 2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46, 7631–7633 (2010)

    CAS  Google Scholar 

  7. X. Yang, L. Zhou, A. Feng, H. Tang, H. Zhang, Z. Ding, Y. Ma, M. Wu, S. Jin, G. Li, Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents. J. Mater. Res. 29, 935–941 (2014)

    CAS  Google Scholar 

  8. M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986–3017 (2013)

    CAS  Google Scholar 

  9. L. He, K. Wen, Z. Zhang, L. Ye, W. Lv, J. Fei, S. Zhang, W. He, Advanced materials for flexible electrochemical energy storage devices. J. Mater. Res. 33, 2281–2296 (2018)

    CAS  Google Scholar 

  10. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)

    CAS  Google Scholar 

  11. D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018)

    CAS  Google Scholar 

  12. Q. Chen, D. Cai, H. Zhan, Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. J. Alloys Compd. 721, 205–212 (2017)

    CAS  Google Scholar 

  13. H. Huang, X. Deng, L. Yan, G. Wei, W. Zhou, X. Liang, J. Guo, One-step synthesis of self-supported Ni3S2/NiS composite film on Ni foam by electrodeposition for high-performance supercapacitors. Nanomaterials 9, 1718 (2019)

    CAS  Google Scholar 

  14. J. Kang, Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties. Int. J. Electrochem. Sci. 12, 9588–9600 (2017)

    CAS  Google Scholar 

  15. X.-Y. Yu, L. Yu, L. Shen, X. Song, H. Chen, X. Lou, General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 24, 7440–7446 (2014)

    CAS  Google Scholar 

  16. W. Wang, S. Tan, G. Zhu, K. Wu, L. Tan, Y. Li, Y. Yang, SDBS-assisted hydrothermal synthesis of flower-like Ni–Mo–S catalysts and their enhanced hydrodeoxygenation activity. RSC Adv. 5, 94040–94045 (2015)

    CAS  Google Scholar 

  17. S.K. Sharma, V. Grover, A.K. Tyagi, D.K. Avasthi, U.B. Singh, P.K. Kulriya, Probing the temperature effects in the radiation stability of Nd2Zr2O7 pyrochlore under swift ion irradiation. Materialia 6, 100317 (2019)

    Google Scholar 

  18. S. Theresa, R. Jagan, R. Ranjusha, A. Paravannoor, V. Lakshmi, K.R.V. Subramanian, S. Nair, A. Balakrishnan, Lithium-ion storage performance of camphoric carbon wrapped NiS nano/micro-hybrids. RSC Adv. 4, 11673 (2014)

    Google Scholar 

  19. R. Bhardwaj, R. Jha, M. Bhushan, Improved electrocatalytic performance with enlarged surface area and reduced bandgap of caterpillar and cabbage-like nickel sulphide nanostructures. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01488-7

    Article  Google Scholar 

  20. W. Dong, X. Wang, B. Li, L. Wang, B. Chen, C. Li, X. Li, T. Zhang, Z. Shi, Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Trans. 40, 243–248 (2011)

    CAS  Google Scholar 

  21. M.J. Chithra, K. Pushpanathan, M. Loganathan, Structural and optical properties of co-doped ZnO nanoparticles synthesized by precipitation method. Mater. Manuf. Processes 29, 771–779 (2014)

    CAS  Google Scholar 

  22. P.-F. Yin, X.-Y. Han, C. Zhou, C.-H. Xia, C.-L. Hu, L.-L. Sun, Large-scale synthesis of nickel sulfide micro/nanorods via a hydrothermal process. Int. J. Miner. Metall. Mater. 22, 762–769 (2015)

    CAS  Google Scholar 

  23. V. Mohanraj, R. Jayaprakash, R. Robert, J. Balavijayalakshmi, S. Gopi, Effect of particle size on optical and electrical properties in mixed CdS and NiS nanoparticles synthesis by ultrasonic wave irradiation method. Mater. Sci. Semicond. Process. 56, 394–402 (2016)

    CAS  Google Scholar 

  24. M. Salavati-Niasari, F. Davar, H. Emadi, Hierarchical nanostructured nickel sulfide architectures through simple hydrothermal method in the presence of thioglycolic acid. Chalcogenide Lett. 7, 647–655 (2010)

    CAS  Google Scholar 

  25. N.K. Gondia, S.K. Sharma, Comparative optical studies of naphthalene based Schiff base complexes for colour tunable application. Mater. Chem. Phys. 224, 314–319 (2019)

    CAS  Google Scholar 

  26. P. Sakthivel, G.K.D. Prasanna Venkatesan, K. Subramaniam, P. Muthukrishnan, Structural, optical, photoluminescence and electrochemical behaviours of Mg, Mn dual-doped ZnS quantum dots. J. Mater. Sci.: Mater. Electron. 30, 11984–11993 (2019)

    CAS  Google Scholar 

  27. O.O. Balayeva, A.A. Azizov, M.B. Muradov, A.M. Maharramov, G.M. Eyvazova, R.M. Alosmanov, Z.Q. Mamiyev, Z.A. Aghamaliyev, β-NiS and Ni3S4 nanostructures: fabrication and characterization. Mater. Res. Bull. 75, 155–161 (2016)

    CAS  Google Scholar 

  28. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    CAS  Google Scholar 

  29. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, Influence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Adv. 4, 6141–6150 (2014)

    CAS  Google Scholar 

  30. J. Kang, Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties (2017)

  31. Y. Ruan, D. Zha, L. Lv, B. Zhang, J. Liu, X. Ji, C. Wang, J. Jiang, Al-doped β-NiS mesoporous nanoflowers for hybrid-type electrodes toward enhanced electrochemical performance. Electrochim. Acta 236, 307–318 (2017)

    CAS  Google Scholar 

  32. K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal–organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)

    CAS  Google Scholar 

  33. M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016)

    CAS  Google Scholar 

  34. Y. Pan, Y. Chen, X. Li, Y. Liu, C. Liu, Nanostructured nickel sulfides: phase evolution, characterization and electrocatalytic properties for the hydrogen evolution reaction. RSC Adv. 5, 104740–104749 (2015)

    CAS  Google Scholar 

  35. R. Ramachandran, M. Saranya, A.N. Grace, F. Wang, MnS nanocomposites based on doped graphene: simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors. RSC Adv. 7, 2249–2257 (2017)

    CAS  Google Scholar 

  36. N.K. Sidhu, A.C. Rastogi, Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synth. Met. 219, 1–10 (2016)

    CAS  Google Scholar 

  37. Y. Wang, Q. Zhu, L. Tao, X. Su, Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J. Mater. Chem. 21, 9248–9254 (2011)

    CAS  Google Scholar 

  38. B.T. Zhu, Z. Wang, S. Ding, J.S. Chen, X.W. Lou, Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 1, 397–400 (2011)

    CAS  Google Scholar 

  39. M. Bhushan, R. Jha, R. Bhardwaj, Reduced band gap and diffusion controlled spherical n-type ZnS nanoparticles for absorption of UV-Vis region of solar spectrum. J. Phys. Chem. Solids 135, 109021 (2019)

    CAS  Google Scholar 

  40. X. Wang, Z. Yan, H. Pang, W. Wang, G. Li, Y. Ma, H. Zhang, X. Li, J. Chen, NH4CoPO4 H2O microflowers and porous Co2P2O7 microflowers: effective electrochemical supercapacitor behavior in different alkaline electrolytes. Int. J. Electrochem. Sci. 8, 3768–3785 (2013)

    CAS  Google Scholar 

  41. J.S. Chen, S.P. Huang, D.J. Blackwood, Composition-dependent pseudocapacitive properties of self-supported nickel-based nanobelts. J. Phys. Chem. C 121, 7101–7107 (2017)

    CAS  Google Scholar 

  42. R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao, P. Guo, Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids Surf. A 457, 94–99 (2014)

    CAS  Google Scholar 

  43. S.J. Patil, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La2Te3 prepared by a chemical synthesis route. RSC Adv. 4, 56332–56341 (2014)

    CAS  Google Scholar 

  44. J. Liu, P. Liu, Synthesis and electrochemical properties of various dimensional poly(1,5-diaminoanthraquinone) nanostructures: nanoparticles, nanotubes and nanoribbons. J. Colloid Interface Sci. 542, 1–7 (2019)

    CAS  Google Scholar 

  45. H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, X. Liu, Y. Fu, Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. J. Colloid Interface Sci. 549, 105–113 (2019)

    CAS  Google Scholar 

  46. P.R. Jothi, R.R. Salunkhe, M. Pramanik, S. Kannan, Y. Yamauchi, Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Adv. 6, 21246–21253 (2016)

    CAS  Google Scholar 

  47. D.P. Dubal, V.J. Fulari, C.D. Lokhande, Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Microporous Mesoporous Mater. 151, 511–516 (2012)

    CAS  Google Scholar 

  48. S.J. Patil, V.S. Kumbhar, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Chemical synthesis of α-La2S3 thin film as an advanced electrode material for supercapacitor application. J. Alloys Compd. 611, 191–196 (2014)

    CAS  Google Scholar 

  49. S.J. Patil, A.C. Lokhande, C.D. Lokhande, Effect of aqueous electrolyte on pseudocapacitive behavior of chemically synthesized La2S3 electrode. Mater. Sci. Semicond. Process. 41, 132–136 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Vice-Chancellor Prof. Jai Prakash Saini of Netaji Subhas University of Technology (former Netaji Subhas Institute of Technology, University Of Delhi) for providing the infrastructure for experimental work and financial support for characterization of synthesized samples. Authors also thank Prof. K. Sreenivas and U.S.I.C., University of Delhi USIC for synthesized sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, R., Jha, R., Bhushan, M. et al. Hydrothermally prepared nickel disulphide nanoparticles with enhanced areal capacitance. J Mater Sci: Mater Electron 32, 2409–2421 (2021). https://doi.org/10.1007/s10854-020-05006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05006-x

Navigation