Skip to main content

Advertisement

Log in

Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of congo red under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a sol–gel method has been employed to fabricate Cr-doped ZnO nanoparticles (NPs) in the presence of starch at different annealing temperatures. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and Fourier transforms infrared spectroscopy (FTIR). All samples were defined as hexagonal wurtzite ZnO with particle sizes equal to 26, 22, and 31 nm for pure ZnO, Cr-doped ZnO at 500 °C and 700 °C, respectively. The Cr-doped ZnO photocatalyst at 500 °C shifted the band gap energy of ZnO from 3.16 to 3.09 eV. The nanomaterials' photocatalytic activity was tested through the photodegradation of congo red (CR) under visible light illumination. The results demonstrated that the Cr-doped ZnO annealed at 500 °C is an excellent photocatalyst with enhanced degradation competence towards CR dye by virtue of its reduced size and lower band gap energy. The kinetics of the photodegradation fitted the pseudo-first-order model while the mechanistic investigations revealed the great impact of h+ and ·OH on the degradation process. The starch-stabilized chromium-doped ZnO shows a high photocatalytic activity towards CR, indicating their possible environmental remediation application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Vinayagam et al., Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B 203, 111760 (2020)

    CAS  Google Scholar 

  2. A. Mirzaei et al., Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@ g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J. Hazard. Mater. 359, 516–526 (2018)

    CAS  Google Scholar 

  3. C.-F. Liu, Y.-J. Lu, C.-C. Hu, Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting. ACS Omega 3(3), 3429–3439 (2018)

    CAS  Google Scholar 

  4. M. Chen et al., ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 7(17), 2449–2453 (2011)

    CAS  Google Scholar 

  5. X. Ma et al., Optical properties of sputtered hexagonal CdZnO films with band gap energies from 1.8 to 3.3 eV. J. Alloys Compd. 509(23), 6599–6602 (2011)

    CAS  Google Scholar 

  6. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 22(7), 798–806 (1988)

    CAS  Google Scholar 

  7. S. Rehman et al., Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170(2–3), 560–569 (2009)

    CAS  Google Scholar 

  8. J. Bloh, R. Dillert, D. Bahnemann, Transition metal-modified zinc oxides for UV and visible light photocatalysis. Environ. Sci. Pollut. Res. 19(9), 3688–3695 (2012)

    CAS  Google Scholar 

  9. K. Hossienzadeh et al., Sonocatalytic and photocatalytic efficiency of transition metal-doped ZnO nanoparticles in the removal of organic dyes from aquatic environments. Korean J. Chem. Eng. 36(8), 1360–1370 (2019)

    CAS  Google Scholar 

  10. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156(1–3), 194–200 (2008)

    CAS  Google Scholar 

  11. A. Modwi et al., Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mol. Struct. 1173, 1–6 (2018)

    CAS  Google Scholar 

  12. A. Modwi et al., Photo-degradation of a mixture of dyes using Barium doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 30(15), 14714–14725 (2019)

    CAS  Google Scholar 

  13. S.K. Mishra et al., Efficient UV photosensitive and photoluminescence properties of sol–gel derived Sn doped ZnO nanostructures. Sens. Actuators A 211, 8–14 (2014)

    CAS  Google Scholar 

  14. H. Li et al., Roles of Cr3+ doping and oxygen vacancies in SrTiO3 photocatalysts with high visible light activity for NO removal. J. Catal. 297, 65–69 (2013)

    CAS  Google Scholar 

  15. Y. Liu et al., Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method. J. Alloys Compd. 486(1–2), 835–838 (2009)

    CAS  Google Scholar 

  16. A. Meng et al., Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl. Mater. Interfaces 7(49), 27449–27457 (2015)

    CAS  Google Scholar 

  17. C. Wu et al., Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater. Lett. 65(12), 1794–1796 (2011)

    CAS  Google Scholar 

  18. L. Li et al., First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C 113(19), 8460–8464 (2009)

    CAS  Google Scholar 

  19. L. Janssen, L. Moscicki, Thermoplastic Starch: A Green Material for Various Industries (Wiley, Hoboken, 2009).

    Google Scholar 

  20. L.M. Liz-Marzán, Nanometals: formation and color (2004)

  21. K.K. Taha et al., Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J. Photochem. Photobiol. A 390, 112263 (2020)

    CAS  Google Scholar 

  22. T. Munawar et al., Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.130

    Article  Google Scholar 

  23. P. Swarthmore, Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, 1972), Card, 3–0226

  24. Y. Hu et al., The morphology and optical properties of Cr-doped ZnO films grown using the magnetron co-sputtering method. Appl. Surf. Sci. 254(13), 3873–3878 (2008)

    CAS  Google Scholar 

  25. R. Kelsall, I.W. Hamley, M. Geoghegan, Nanoscale Science and Technology (Wiley, Hoboken, 2005).

    Google Scholar 

  26. X. Wang et al., Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19(45), 455702 (2008)

    Google Scholar 

  27. M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3(4), 363–369 (2014)

    CAS  Google Scholar 

  28. C.S. Barrett, Structure of Metals (McGraw-Hill Book Company Inc, New York, 1943).

    Google Scholar 

  29. C.S. Barrett, Five outstanding new books. Science 98(2544) (1943)

  30. A. Modwi et al., Structural and optical characteristic of chalcone doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 29(4), 2791–2796 (2018)

    CAS  Google Scholar 

  31. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Google Scholar 

  32. K. Karthika, K. Ravichandran, Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications. J. Mater. Sci. Technol. 31(11), 1111–1117 (2015)

    CAS  Google Scholar 

  33. Y. Vidya et al., Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies. Spectrochim. Acta A 135, 241–251 (2015)

    CAS  Google Scholar 

  34. O. Lupan et al., Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256(6), 1895–1907 (2010)

    CAS  Google Scholar 

  35. G. Zatryb et al., Stress transition from compressive to tensile for silicon nanocrystals embedded in amorphous silica matrix. Thin Solid Films 571, 18–22 (2014)

    CAS  Google Scholar 

  36. A. Modwi et al., Structural, surface area and FTIR characterization of Zn0.95−xCu0.05Fe0.0xO nanocomposites prepared via sol–gel method. J. Mater. Sci.: Mater. Electron. 29(3), 2184–2192 (2018)

    CAS  Google Scholar 

  37. A. Modwi et al., Influence of annealing temperature on the properties of ZNO synthesized via 2.3. Dihydroxysuccinic acid using flash sol-gel method. J. Ovonic Res. 12(2), 59–66 (2016)

    CAS  Google Scholar 

  38. K. Taha, M. M’hamed, H. Idriss, Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. J. Ovonic Res. 11(6), 271–276 (2015)

    CAS  Google Scholar 

  39. P. Vanathi et al., Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater. Lett. 134, 13–15 (2014)

    CAS  Google Scholar 

  40. S. Yakout, Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: Insights into the magnetic and photocatalytic properties. Solid State Sci. 83, 207–217 (2018)

    CAS  Google Scholar 

  41. A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Google Scholar 

  42. T. Pandiyarajan, B. Karthikeyan, Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. J. Nanopart. Res. 14(1), 647 (2012)

    Google Scholar 

  43. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    Google Scholar 

  44. T. Ungár, Characterization of nanocrystalline materials by X-ray line profile analysis. J. Mater. Sci. 42(5), 1584–1593 (2007)

    Google Scholar 

  45. G.A. Mohamed, E.-M. Mohamed, A.A. El-Fadl, Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method. Phys. B 308, 949–953 (2001)

    Google Scholar 

  46. G. Srinet, R. Kumar, V. Sajal, High Tc ferroelectricity in Ba-doped ZnO nanoparticles. Mater. Lett. 126, 274–277 (2014)

    CAS  Google Scholar 

  47. M.-M. Bagheri-Mohagheghi et al., The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method. Phys. B 403(13–16), 2431–2437 (2008)

    CAS  Google Scholar 

  48. R.N. Aljawfi, F. Rahman, K.M. Batoo, Effect of grain size and grain boundary defects on electrical and magnetic properties of Cr doped ZnO nanoparticles. J. Mol. Struct. 1065, 199–204 (2014)

    Google Scholar 

  49. Y. Sun et al., Enhanced performance for Hg (II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism. Chem. Eng. J. 344, 616–624 (2018)

    CAS  Google Scholar 

  50. K. Kumar et al., Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compd. 588, 681–689 (2014)

    CAS  Google Scholar 

  51. K. Raja, P. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochim. Acta A 131, 183–188 (2014)

    CAS  Google Scholar 

  52. V.D. Mote, V.R. Huse, B.N. Dole, Synthesis and characterization of Cr doped ZnO nanocrystals. World J. Condens. Matter Phys. (2012). https://doi.org/10.4236/wjcmp.2012.24035

    Article  Google Scholar 

  53. J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory (Elsevier, Amsterdam, 2006).

    Google Scholar 

  54. P. Mercera et al., Zirconia as a support for catalysts: evolution of the texture and structure on calcination in air. Appl. Catal. 57(1), 127–148 (1990)

    CAS  Google Scholar 

  55. M. Kusuma, G. Chandrappa, Effect of calcination temperature on characteristic properties of CaMoO4 nanoparticles. J. Sci.: Adv. Mater. Devices 4(1), 150–157 (2019)

    Google Scholar 

  56. H.D. Jang, S.-K. Kim, S.-J. Kim, Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3(2–3), 141–147 (2001)

    CAS  Google Scholar 

  57. S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)

    CAS  Google Scholar 

  58. H. Lin et al., Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68(1–2), 1–11 (2006)

    CAS  Google Scholar 

  59. M.T. Islam et al., Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. J. Environ. Chem. Eng. 6(4), 3827–3836 (2018)

    CAS  Google Scholar 

  60. C.A. Gouvea et al., Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40(4), 433–440 (2000)

    CAS  Google Scholar 

  61. M. Anas et al., Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater. Sci. Semicond. Process. 41, 209–218 (2016)

    CAS  Google Scholar 

  62. J.M. Gutteridge, D.A. Rowley, B. Halliwell, Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem. J. 199(1), 263–265 (1981)

    CAS  Google Scholar 

  63. X. Chen et al., Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12(1), 143 (2017)

    Google Scholar 

  64. R. Saleh, N.F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct. 74, 217–233 (2014)

    CAS  Google Scholar 

  65. S. Erdemoğlu et al., Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS. J. Hazard. Mater. 155(3), 469–476 (2008)

    Google Scholar 

  66. S. Kakarndee, S. Nanan, SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye. J. Environ. Chem. Eng. 6(1), 74–94 (2018)

    CAS  Google Scholar 

  67. T. Senasu, K. Hemavibool, S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation. RSC Adv. 8(40), 22592–22605 (2018)

    CAS  Google Scholar 

  68. H. Zhang, R. Zong, Y. Zhu, Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J. Phys. Chem. C 113(11), 4605–4611 (2009)

    CAS  Google Scholar 

  69. J. Lv et al., Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 178, 6–17 (2017)

    CAS  Google Scholar 

  70. A. Kadam et al., Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. 61, 78–86 (2018)

    CAS  Google Scholar 

  71. A.R. Upreti et al., Efficient visible light photocatalytic degradation of 17α-ethinyl estradiol by a multifunctional Ag–AgCl/ZnFe2O4 magnetic nanocomposite. RSC Adv. 6(39), 32761–32769 (2016)

    CAS  Google Scholar 

  72. V. Kandavelu, H. Kastien, K.R. Thampi, Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B 48(2), 101–111 (2004)

    CAS  Google Scholar 

  73. I. Poulios et al., Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. J. Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol. 75(3), 205–212 (2000)

    CAS  Google Scholar 

  74. K.K. Taha et al., Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water. Nanotechnol. Environ. Eng. 4(1), 10 (2019)

    CAS  Google Scholar 

  75. J.-Z. Kong et al., Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem. 183(6), 1359–1364 (2010)

    CAS  Google Scholar 

  76. G. Wu, W. Xing, Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater. Technol. 34(5), 292–300 (2019)

    CAS  Google Scholar 

  77. A. Houas et al., Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31(2), 145–157 (2001)

    CAS  Google Scholar 

  78. W. Liu et al., Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 209, 386–393 (2012)

    CAS  Google Scholar 

  79. H. Zhu et al., Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 169(1–3), 933–940 (2009)

    CAS  Google Scholar 

  80. H.R. Pouretedal, M. Hosseini, Bleaching kinetic and mechanism study of congo red catalyzed by ZrO2 nanoparticles prepared by using a simple precipitation method. Acta Chim. Sloven. 57(2), 415–423 (2010)

    Google Scholar 

  81. C. Ma et al., Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide. Chemosphere 168, 80–90 (2017)

    CAS  Google Scholar 

  82. A. Mayoufi, M.F. Nsib, A. Houas, Doping level effect on visible-light irradiation W-doped TiO2–anatase photocatalysts for Congo red photodegradation. C. R. Chim. 17(7–8), 818–823 (2014)

    CAS  Google Scholar 

  83. L. Singh, P. Rekha, S. Chand, Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Sep. Purif. Technol. 170, 321–336 (2016)

    CAS  Google Scholar 

  84. R. Solomon et al., Enhanced photocatalytic degradation of azo dyes using nano Fe3O4. J. Iran. Chem. Soc. 9(2), 101–109 (2012)

    CAS  Google Scholar 

  85. A.I.J. Joseph, S. Thiripuranthagan, Metal doped titanate photo catalysts for the mineralization of congo red under visible irradiation. RSC Adv. 5(13), 9792–9805 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Modwi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamin, N., Modwi, A., Aissa, M.A.B. et al. Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of congo red under visible light. J Mater Sci: Mater Electron 32, 2234–2248 (2021). https://doi.org/10.1007/s10854-020-04988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04988-y

Navigation