Skip to main content

Advertisement

Log in

Lightweight and high-strength GMT/PEFP/GNP composites with absorb-dominated electromagnetic interference shielding property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As the problem of electromagnetic wave pollution is becoming more and more serious in our daily life, it is urgent to develop a kind of electromagnetic interference (EMI) shielding materials with high-strength and high absorptivity to meet the demand of industrial application. In this study, a facile method is developed to prepare EMI shielding composites with both powerful absorbing and robust mechanical properties by impregnating the suspensions of graphite nanoplatelets (GNP) and polyacrylate expandable foam particles (PEFP) into the porous glass fiber mat reinforced thermoplastics (GMT), and then hot forming and pressing, the thickness of GMT/PEFP/GNP composites is 2 mm. GNP not only acted as an efficient conductive pathway in the GMT/PEFP/GNP composites matrix, but also formed a conductive cell structure with the foamed PEFP, which increased the electromagnetic waves absorption. The total shielding efficiency (SET) of the GMT/PEFP/GNP-4.0 wt% composite is up to 33.8 dB at 11 GHz, and the power coefficient of reflectivity is 0.71, which is lower 17% than that of GMT/GNP composites without the cell structure constructed by PEFP in the matrix. Furthermore, the melting of polypropylene (PP) in the mats act as the interface adhesive for glass fiber (GF) and GNP, so the tensile strength is enhanced up to 22.8 MPa for the GMT/PEFP/GNP-4.0 wt% composites with lightweight, due to the formation of cell structure constructed by the PEFP. Therefore, this paper provides a simple method to prepare lightweight and high-strength GMT/PEFP/GNP composites for EMI shielding, which is of great significance for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.J. Liang, Y. Wang, Y. Huang, Y.F. Ma, Z.F. Liu, J.M. Cai, C.D. Zhang, H.J. Gao, Y.S. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)

    Article  CAS  Google Scholar 

  2. B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, X. Wang, T. Hiraki, Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46(9), 1256–1258 (2008)

    Article  CAS  Google Scholar 

  3. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009)

    Article  CAS  Google Scholar 

  4. J.M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18(7), 792–796 (2008)

    Article  CAS  Google Scholar 

  5. J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma, T.Y. Guo, Y.S. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009)

    Article  CAS  Google Scholar 

  6. M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)

    Article  CAS  Google Scholar 

  7. Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao, Z.Z. Yu, High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016)

    Article  CAS  Google Scholar 

  8. Y. Li, H.J. Yang, X.H. Hao, N.N. Sun, J.H. Du, M.S. Cao, Enhanced electromagnetic interference shielding with low reflection induced by heterogeneous double-layer structure in BiFeO3/BaFe7(MnTi)2.5O19 composite. J Alloys Compd. 772, 99–104 (2019)

    Article  CAS  Google Scholar 

  9. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)

    Article  CAS  Google Scholar 

  10. J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4(29), 7130–7140 (2016)

    Article  CAS  Google Scholar 

  11. J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74(7), 211–232 (2013)

    Article  Google Scholar 

  12. S. Biswas, S.S. Panja, S. Bose, A novel fluorophore-spacer-receptor to conjugate MWNTs and ferrite nanoparticles to design an ultra-thin shield to screen electromagnetic radiation. Mater. Chem. Front. 1(1), 132–145 (2017)

    Article  CAS  Google Scholar 

  13. G. Kulkarni, P. Kandesar, N. Velhal, V. Phadtare, A. Jatratkar, S.K. Shinde, D.Y. Kim, V. Puri, Exceptional electromagnetic interference shielding and microwave absorption properties of room temperature synthesized polythiophene thin films with double negative characteristics (DNG) in the Ku-band region. Chem. Eng. J. 355, 196–207 (2019)

    Article  CAS  Google Scholar 

  14. A.V. Menon, G. Madras, S. Bose, Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 366, 72–82 (2019)

    Article  CAS  Google Scholar 

  15. H.M. Zhang, G.C. Zhang, Q. Gao, M. Tang, Z.L. Ma, J.B. Qin, M.Y. Wang, J.K. Kim, Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020)

    Article  CAS  Google Scholar 

  16. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004)

    Article  CAS  Google Scholar 

  17. B. Zhao, Y. Li, Q.G. Zeng, L. Wang, J.J. Ding, R. Zhang, R.C. Che, Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16, 2003502 (2020)

    Article  CAS  Google Scholar 

  18. A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 149, 188–197 (2018)

    Article  CAS  Google Scholar 

  19. H.D. Huang, C.Y. Liu, D. Zhou, X. Jiang, G.J. Zhong, D.X. Yan, Z.M. Li, Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J. Mater. Chem. A 3(9), 4983–4991 (2015)

    Article  CAS  Google Scholar 

  20. G.P. Kar, S. Biswas, R. Rohini, S. Bose, Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. J. Mater. Chem. A3(15), 7974–7985 (2015)

    Article  CAS  Google Scholar 

  21. Y.J. Liu, D. Song, C.X. Wu, J. Leng, EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B: Eng. 63, 34–40 (2014)

    Article  CAS  Google Scholar 

  22. T.R. Kuang, L.Q. Chang, F. Chen, Y. Sheng, D.J. Fu, X.F. Peng, Peng Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016)

    Article  CAS  Google Scholar 

  23. L. Huang, J.J. Li, Z.J. Wang, Y.B. Li, X.D. He, Y. Yuan, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019)

    Article  CAS  Google Scholar 

  24. X. Fan, G.C. Zhang, J.T. Li, Z.Y. Shang, H.M. Zhang, Q. Gao, J.B. Qin, X.T. Shi, Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite. Compos. Part A Appl. Sci. Manuf. 121, 64–73 (2019)

    Article  CAS  Google Scholar 

  25. H. Pang, D.X. Yan, Y. Bao, J.B. Chen, C. Chen, Z.M. Li, Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. J. Mater. Chem. 22(44), 23568–23575 (2012)

    Article  CAS  Google Scholar 

  26. S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019)

    Article  CAS  Google Scholar 

  27. H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39(11), 1908–1933 (2014)

    Article  CAS  Google Scholar 

  28. L.C. Jia, Y.K. Li, D.X. Yan, Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121, 267–273 (2017)

    Article  CAS  Google Scholar 

  29. S. Li, J. Li, N. Ma, D. Liu, G. Sui, Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustain. Chem. Eng. 7(16), 13970–13980 (2019)

    Article  CAS  Google Scholar 

  30. S. Biswas, I. Arief, S.S. Panja, S. Bose, Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl. Mater. Interfaces 9(3), 3030–3039 (2017)

    Article  CAS  Google Scholar 

  31. X.F. Zhou, B.B. Wang, Z.R. Jia, X.D. Zhang, X.H. Liu, K.K. Wang, B.H. Xu, G.L. Wu, Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interface Sci. 582, 515–525 (2021)

    Article  CAS  Google Scholar 

  32. T.Q. Hou, Z.R. Jia, S.Q. He, Y. Su, X.D. Zhang, B.H. Xu, X.H. Liu, G.L. Wu, Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J. Colloid Interface Sci. 583, 321–330 (2021)

    Article  CAS  Google Scholar 

  33. T.Q. Houa, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagne. J. Mater. Sci. Technol. 68, 61–69 (2021)

    Article  Google Scholar 

  34. J. Lyu, X. Zhao, X.L. Hou, Y.C. Zhang, T.H. Li, Y. Yan, Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Compos. Sci. Technol. 149, 159–165 (2017)

    Article  CAS  Google Scholar 

  35. H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011)

    Article  CAS  Google Scholar 

  36. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)

    Article  CAS  Google Scholar 

  37. Z.Y. Min, H. Yang, F. Chen, T.R. Kuang, Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding. Mater. Lett. 230, 157–160 (2018)

    Article  CAS  Google Scholar 

  38. D. Micheli, C. Apollo, R. Pastore, R. Bueno Morles, S. Laurenzi, M. Marchetti, Nanostructured composite materials for electromagnetic interference shielding applications. Acta Astronaut. 69(9–10), 747–757 (2011)

    Article  CAS  Google Scholar 

  39. H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, G.Y. Ji, Z.Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010)

    Article  CAS  Google Scholar 

  40. D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772–18774 (2012)

    Article  CAS  Google Scholar 

  41. C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, X. Xu, S. Yang, J.Z. Xu, Z.M. Li, A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017)

    Article  CAS  Google Scholar 

  42. B. Zhao, S.P. Zeng, X.P. Li, X.Q. Guo, Z.Y. Bai, B.B. Fan, R. Zhang, Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8, 400–409 (2020)

    Google Scholar 

  43. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015)

    Article  CAS  Google Scholar 

  44. B. Zhao, R.M. Wang, Y. Li, Y.M. Ren, X. Li, X.Q. Guo, R. Zhang, C.B. Park, Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020)

    Article  CAS  Google Scholar 

  45. B.Y. Hao, Z.C. Tao, Z.J. Liu, D.Q. Zhang, Z. He, Q.G. Guo, L. Liu, D. Jiang, Lightweight graphite membranes with excellent electromagnetic interference shielding effectiveness and thermal conductivity. J. Mater. Sci. Mater. Electron. 30(7), 6734–6744 (2019)

    Article  CAS  Google Scholar 

  46. B. Shen, Y. Li, W.T. Zhai, W.G. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016)

    Article  CAS  Google Scholar 

  47. J. Li, W.J. Peng, Z.J. Fu, X.H. Tang, H. Wu, S. Guo, M. Wang, Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplatelets in polymer matrix. Compos. Part B Eng. 171, 204–213 (2019)

    Article  CAS  Google Scholar 

  48. F. Zhang, W. Cui, B.B. Wang, B.H. Xu, X.H. Liu, X.H. Liu, Z.R. Jia, G.L. Wu, Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. Part B Eng. 204, 108491 (2021)

    Article  CAS  Google Scholar 

  49. X.F. Zhou, Z.R. Jia, A.L. Feng, K.K. Wang, X.H. Liu, L. Chen, H.J. Cao, G.L. Wu, Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 2452–2139 (2020)

    Google Scholar 

  50. H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang, P.G. Ren, Z.M. Li, Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018)

    Article  CAS  Google Scholar 

  51. G.L. Wang, G.Q. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 6(25), 6847–6859 (2018)

    Article  CAS  Google Scholar 

  52. J. Li, H. Liu, J. Guo, Z. Hu, Z.J. Wang, B. Wang, L. Liu, Y.D. Huang, Z.H. Guo, Flexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties. J. Mater. Chem. C 5(5), 1095–1105 (2017)

    Article  CAS  Google Scholar 

  53. F. Fang, Y.Q. Li, H.M. Xiao, N. Hu, S.Y. Fu, Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material. J. Mater. Chem. C 4(19), 4193–4203 (2016)

    Article  CAS  Google Scholar 

  54. Y. Xu, Y. Li, W. Hua, A. Zhang, J.J. Bao, Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 8(36), 24131–24142 (2016)

    Article  CAS  Google Scholar 

  55. Z.H. Zeng, M.J. Chen, H. Jin, W.W. Li, X. Xue, L.C. Zhou, Y.M. Pei, H. Zhang, Z. Zhang, Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016)

    Article  CAS  Google Scholar 

  56. P. Kumar, F. Shahzad, S.M. Hong, C.M. Koo, A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv. 6(103), 101283–101287 (2016)

    Article  CAS  Google Scholar 

  57. Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, Z. Zhang, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016)

    Article  CAS  Google Scholar 

  58. Y. Zhang, M. Qiu, Y. Yu, B.Y. Wen, L.L. Cheng, A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9(1), 809–818 (2017)

    Article  CAS  Google Scholar 

  59. H.X. Zhang, Z.R. Jia, A.L. Feng, Z.H. Zhou, L. Chen, C.H. Zhang, X.H. Liu, G.L. Wu, In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 199, 108261 (2020)

    Article  CAS  Google Scholar 

  60. Z.G. Gao, Z.R. Jia, K.K. Wang, X.H. Liu, L. Bi, G.G. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY20E030008), the National Natural Science Foundation of China (Grant No. 21504078), the key R&D projects of Zhejiang Province (Grant nos. 2020C01010, 2018C01038), and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Ma or Xu Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Qiao, L., Yu, H. et al. Lightweight and high-strength GMT/PEFP/GNP composites with absorb-dominated electromagnetic interference shielding property. J Mater Sci: Mater Electron 32, 25863–25875 (2021). https://doi.org/10.1007/s10854-020-04970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04970-8

Navigation