Skip to main content
Log in

Influence of transition metals doping (M) on the structural, optical, and electronic properties of non-stoichiometric nano-CdS1−x:Mx

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Non-stoichiometric cadmium sulfide, CdS0.9, nanomaterials doped with Mn, Co, Cu, and Zn (CdS0.9M0.1, M = Mn, Co, Cu, Zn) were prepared using a thermolysis procedure. X-ray diffraction analysis revealed that all doped samples have the same CdS structure (hexagonal and cubic) except the Co-doped sample, where some slight cobalt oxides were detected. The influence of different transition metals doping on the structural parameters of the phases developed has been examined by performing Rietveld analysis, also the residing of doped metals at the possible crystallographic sites and the possibility to oxygen ion diffusion into the matrix were also studied. Images from high-resolution transmission electron microscope confirmed the quantum dots nature of the formed samples. The optical bandgap could be tailored and photoluminescence properties of the samples were affected by the different types of doped metals. The doped samples emitted violet, blue, and green colors depending on the type of doped metals. DFT calculation was performed to discuss the possibility of the presence of oxygen ions in doped non-stoichiometric CdS samples. DFT calculations demonstrated that the Cu-doped non-stoichiometric CdS sample has the highest photoconductivity in the infrared range. The modified properties of CdS0.9M0.1 nanomaterials by changing the doped metals make them good candidates for photocatalytic activity and optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Ibiyemi, A.O. Awodugba, O. Akinrinola, A.A. Faremi, J. Semiconduct. 38, 093002 (2017)

    Article  Google Scholar 

  2. B. Barman, K.V. Bangera, G.K. Shivakumar, Mater. Res. Express 6, 126441 (2020)

    Article  Google Scholar 

  3. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloys Compd. 618, 280 (2015)

    Article  CAS  Google Scholar 

  4. A.H. Mueller, M.A. Petruska, M. Achermann, D. Werder, E. Akhadov, D. Koleske, M. Hoffbauer, V.I. Klimov, Nano Lett. 5(6), 1039 (2005)

    Article  CAS  Google Scholar 

  5. R.L. Morales, O.Z. Angel, G.T. Delgado, Appl. Surf. Sci. 175e176, 562 (2001)

    Article  Google Scholar 

  6. R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys. Condens. Matter 12(50), 10647 (2000)

    Article  CAS  Google Scholar 

  7. P. Chand, R. Ghosh, Sukriti, Optik 161, 44 (2018)

    Article  CAS  Google Scholar 

  8. C. Rosiles-Perez, J. Lambert, A. Alatorre-Ordaz, A. Gutierrez-Fuentes, T. López-Luke, R. Ramirez-, T. Fuentes, Kobayashi, J. Lumin. 184, 123 (2017)

    Article  CAS  Google Scholar 

  9. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Mater. Sci. Semicond. Process. 34, 39 (2015)

    Article  CAS  Google Scholar 

  10. D. Petre, D. Pintilie, I.Pentia and E. Botila, Mater. Sci. Eng B58, 238 (1999)

    Article  CAS  Google Scholar 

  11. Fatma, Göde, Optik 197, 163217 (2019)

    Article  Google Scholar 

  12. Y. Kashiwaba, Y. Isojima, K. Ohta, Sol. Energy Mater. Sol. C 75, 253 (2003)

    Article  CAS  Google Scholar 

  13. F. Aftab, J. Iqbal, J. Korean Phys. Soc. 69(4), 593 (2016)

    Article  Google Scholar 

  14. V. Kumar, K. Kumar, H.C. Jeon, T.W. Kang, D. Lee, S.Kumar, J. Phys. Chem. Solids 124, 1 (2019)

    Article  CAS  Google Scholar 

  15. J.C. Lee, N.G. Subramanium, J.W. Lee, T.W. Kang, Appl. Phys.A 85, 2909 (2007)

    Google Scholar 

  16. J.S. Kulkarni, O. Kazakova, J.D. Holmes, Appl. Phys. A 85, 277 (2006)

    Article  CAS  Google Scholar 

  17. N.V. Hullavarad, S.S. Hullavarad, P.C. Karulkar, J. Nanosci. Nanotechnol. 8, 2272 (2008)

    Article  Google Scholar 

  18. N.H. Patel, M.P. Deshpande, S.H. Chaki, J. Mater. Sci.: Mater. Electron. 29, 11394 (2018)

    CAS  Google Scholar 

  19. M.J.I. Khan, M.N. Usmani, Z. Kanwal, P. Akhtar, Optik 156, 817 (2018)

    Article  CAS  Google Scholar 

  20. X. Chen, P. Li, M. Ren, P. Wang 256(11), 1900182 (2019)

  21. Z.K. Heiba, A.A. Albassam, M.B. Mohamed, Appl. Phys. A 126, 479 (2020)

    Article  CAS  Google Scholar 

  22. Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, A.A. Albassam, J. Mater. Sci.: Mater. Electron. 31, 13447 (2020)

    CAS  Google Scholar 

  23. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A.M. El-naggar, A.A. Albassam, J. Mater. Sci.: Mater. Electron. 31, 12696 (2020)

    CAS  Google Scholar 

  24. M. Mohamed, A.M. Abdelraheem, M.I. Abd-Elrahman, N.M.A. Hadia, E.R. Shaaban, Appl. Phys. A 125, 483 (2019)

    Article  CAS  Google Scholar 

  25. L. Lutterotti, Nucl. Inst. Methods, Phys. Res. B. 268, 334 (2010)

    Article  CAS  Google Scholar 

  26. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys.Rev. Lett 77, 3865 (1996)

    Article  CAS  Google Scholar 

  28. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  CAS  Google Scholar 

  29. Z.K. Heiba, Powder Diffr. 17(3), 191 (2002)

    Article  CAS  Google Scholar 

  30. Z.K. Heiba, Cryst. Res. Technol. 38(6), 488 (2003)

    Article  CAS  Google Scholar 

  31. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  32. Y.C. Zhang, W.W. Chen, X.Y. Hu, Cryst. Growth Des. 7, 3 (2007)

    Google Scholar 

  33. M. Anbarasi, V.S. Nagarethinam, A.R. Balu, Mater. Sci. Poland 32(4), 652 (2014)

    Article  CAS  Google Scholar 

  34. G. Giribabu, G. Murali, DAmaranatha Reddy, C. Liu, R.P. Vijayalakshmi, J. Alloy Compd. 581, 363 (2013)

    Article  CAS  Google Scholar 

  35. E. Bacaksiz, M. Tomakin, M. Altunbas, M. Parlak, T. Colakoglu, Phys. B 403, 3740 (2008)

    Article  CAS  Google Scholar 

  36. P. Koidl, Phys. Rev. B 15, 2493 (1977)

    Article  CAS  Google Scholar 

  37. A. Rafiq, M. Imran, M. Aqeel, M. Naz, M. Ikram, S. Ali, J. Inorganic Organomet. Polym. Mater. 30, 1915 (2020)

    Article  CAS  Google Scholar 

  38. L.Levy, J.F.Hochepied, M.P., Pileni, J. Phys. Chem. 100, 18322 (1996)

    Article  Google Scholar 

  39. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207 (1986)

    Article  CAS  Google Scholar 

  40. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Phys. Rev. Lett. 97, 146403 (2006)

    Article  Google Scholar 

  41. M. Ishikawa, T. Nakayama, Phys. Status Solidi C 10, 1385 (2013)

    Article  CAS  Google Scholar 

  42. F. Ibraheem, M.A. Mahdy, E.A. Mahmoud, J.E. Ortega, C. Rogero, I.A. Mahdy, A. El-Sayed, J. Alloy Compd. 834, 155196 (2020)

    Article  CAS  Google Scholar 

  43. G.S. K.Kaur, Lotey, N.K.Verma, Mater. Chem. Phys. 143(1), 41 (2013)

    Article  Google Scholar 

  44. J. Hasanzadeh, S. Farjami Shayesteh, Eur. Phys. J. Appl. Phys. 51, 30601 (2010)

    Article  Google Scholar 

  45. A.N. Yadav, A.K. Singh, D. Chauhan, P.R. Solanki, P. Kumar, K. Singh, N. J. Chem. 44, 13529 (2020)

    Article  CAS  Google Scholar 

  46. A.K. Gupta, R. Kripal, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 626 (2012)

    Article  CAS  Google Scholar 

  47. L.S. Devi, K.N. Devi, B.I. Sharma, H.N. Sarma, Indian J. Phys. 88, 477 (2014)

    Article  CAS  Google Scholar 

  48. M.A. Osman, A.G. Abd-Elrahim, A.A. Othman, J. Alloy. Compd. 722, 344 (2017)

    Article  CAS  Google Scholar 

  49. D.V. Korbutyak1, V.P. Kladko1, N.V. Safryuk, O.Y. Gudymenko, S.I. Budzulyak, V.M. Ermakov, O.P. Lotsko, V.S. Tokarev, H.A. Ilchuk, O.M. Shevchuk, R.Y. Petrus, N.M. Bukartyk, S.V. Tokarev, L.V. Dolynska, J. Nano- Electron. Phys. 9(5), 05024 (2017) 

  50. I. López, I. Gómez, Phys. B Conden. Matter. 453, 81 (2014)

    Article  Google Scholar 

  51. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  CAS  Google Scholar 

  52. X.-Y. Jiang, C.-L. Yang, Y.-X. Han, M.-S. Wang, X.-G. Ma, Mater. Chem. Phys. 183, 349 (2016)

    Article  CAS  Google Scholar 

  53. Y.X. Han, C.L. Yang, Y.T. Sun, M.S. Wang, X.G. Ma, J. Alloys Compd. 585, 503 (2014)

    Article  CAS  Google Scholar 

  54. C.X. Li, S.H. Dang, Acta Phys. Sin. 61, 017202 (2012)

    Article  Google Scholar 

  55. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, J. Mater. Sci.: Mater. Electron. 31, 14645 (2020)

    CAS  Google Scholar 

  56. M.S. Khan, L. Shi, X. Yang, S. Ali, H. Ullah, B. Zou, J. Phys.: Condens. Matter. 31, 395702 (2019)

    CAS  Google Scholar 

  57. M.A. Farrukh, I. Muneer, K.M. Butt, S. Batool, N. Fakhar, J. Chin. Chem. Soc 63(12), 952 (2016)

    Article  CAS  Google Scholar 

  58. Z. Suo, J. Dai, Z. Li, S. Gao, Results Phys. 15, 102801 (2019)

    Article  Google Scholar 

  59. M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, L. Wang, T. Tesfamichael, Sci. Rep. 9, 718 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURG-1442-102.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Bakr Mohamed or A. M. El-naggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Farag, N.M. et al. Influence of transition metals doping (M) on the structural, optical, and electronic properties of non-stoichiometric nano-CdS1−x:Mx. J Mater Sci: Mater Electron 32, 1850–1863 (2021). https://doi.org/10.1007/s10854-020-04953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04953-9

Navigation