Skip to main content
Log in

Synthesis and characterization of organic substrate in the S band for application in microstrip antennas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, an investigation about the use of carnauba wax as a substrate/superstrate for microstrip antennas is presented. The operating conditions of the material were established through chemical, physical, and electrical analyzes; the XDR and FT-IR allowed to validate and observe the chemical composition of the wax; the mechanical properties were obtained through the Vickers microhardness test and the digital image correlation method and the surface analysis was possible through SEM; the electrical characterization comprised the relative dielectric constant and the loss factor, and the electrical quantities were obtained for the microwave frequency (S band) using the coaxial probe method. These measures made it possible to design and manufacture microstrip antennas with a substrate of carnauba wax and with a substrate of FR4 covered with a superstrate of carnauba wax. The measured antennas obtained resonance frequency around 2.4 GHz, with a bandwidth of 80 MHz. Input impedance of Zi = 50 − j0.1 Ω in some samples and a reflection coefficient of − 46.23 dB in others were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ITU (International Telecommunications Union), 2019 World Telecommunication/ICT Indicators Database, https://doi.org/10.7910/DVN/IP5UBV, Harvard Dataverse, V1

  2. Y. Zhi et al., IEEE Trans. Antennas Propag. 63, 3335–3344 (2015)

    Article  Google Scholar 

  3. D. Souza et al., Microw. Opt. Technol. Lett. 59, 641–645 (2017)

    Article  Google Scholar 

  4. Y. Zhai et al., WiCOM (2012). https://doi.org/10.1109/WiCOM.2012.6478489

    Article  Google Scholar 

  5. T. Elwi, Int. J. Electron. Commun. 101, 44–53 (2019)

    Article  Google Scholar 

  6. C. de Freitas et al., Food Chem. 291, 38–48 (2019)

    Article  Google Scholar 

  7. Y. Zhang et al., Polymer 86, 208–219 (2016)

    Article  CAS  Google Scholar 

  8. B. Gross et al., Phys. Rev. 67, 253–259 (1945)

    Article  Google Scholar 

  9. R. Gerson, J.H. Rohrbaugh, J. Chem. Phys. 23, 2381–2388 (1955)

    Article  CAS  Google Scholar 

  10. T.D. Callinan, A.M. Parks, Electr. Insul. (1959). https://doi.org/10.1109/EIC.1959.7533355

    Article  Google Scholar 

  11. J.M.G. Neto et al., Braz. J. Phys. 33, 371–375 (2003)

    Article  CAS  Google Scholar 

  12. A. Dantas et al., J. Am. Oil. Chem. Soc. 90, 1475–1483 (2013)

    Article  Google Scholar 

  13. F.P.A. de Carvalho, J.M.A. Gomes, J. Rural Econ. Sociol. 46, 421–453 (2008)

    Article  Google Scholar 

  14. Ministry Of Agriculture, Livestock And Supply, Normative Instruction 35/2004, of November 30, 2004, http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=263917388

  15. I. Bayer et al., R. Soc. Chem. (RSC) 7, 7939–7943 (2011)

    CAS  Google Scholar 

  16. C.A.S. Freitas et al., Food Chem. 196, 1293–1300 (2016)

    Article  CAS  Google Scholar 

  17. J.R.V. Hernandez, C.C.M. Goymann, Int. J. Pharm. 322, 161–170 (2006)

    Article  Google Scholar 

  18. C. Invernizzi et al., Int. J. Anal. Chem. (2018). https://doi.org/10.1155/2018/7823248

    Article  Google Scholar 

  19. M. Claire et al., Polym. Polym. Compos. 15, 83–90 (2007)

    Google Scholar 

  20. J. Feitosa et al., Int. J. Civil Environ. Eng. 15, 1–9 (2015)

    Google Scholar 

  21. F. Zhu et al., Measurement 119, 18–27 (2018)

    Article  Google Scholar 

  22. E. M. Hossain, C. Ketata, Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization Sharjah (2009) paper id: 41-44246.

  23. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 2nd edn. (Wiley, New York, 2007), p. 512

    Google Scholar 

  24. Agilent, Application note—Basics of Measuring the Dielectric Properties of Materials. Agilent Literature Number 5989–2589EN, https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/00aps_undefined/RAC-0607-0019_1_5E.pdf

  25. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York, 2012), p. 756

    Google Scholar 

  26. M. Ramesh, K.B. Yip, JMOE 3, 5–10 (2003)

    Google Scholar 

  27. M.A. Matin, A.I. Sayeed, WSEAS Trans. Commun. 9, 63–72 (2010)

    Google Scholar 

  28. C.A. Balanis, Antenna Theory: Analysis and Design, 4th edn. (Wiley, New York, 2009), p. 1052

    Google Scholar 

  29. L.J. Chu, Phys. Limit. Omni-Direct. Antennas 19, 1163–1175 (1948)

    Google Scholar 

  30. J.R. Bray, L. Roy, IEE Proc. 151, 345–350 (2004)

    Google Scholar 

  31. D.E. Anagnostou, IEEE Antennas Wirel. Propag. Lett. 11, 1493–1496 (2012)

    Article  Google Scholar 

  32. J.G.D. Oliveira et al., Microw. Sens. Reson. Elem. 255, 1–15 (2020)

    Google Scholar 

  33. M.F. Davis et al., MTT-S Int. Microw. Symp. Digest. (2001). https://doi.org/10.1109/MWSYM.2001.967240

    Article  Google Scholar 

  34. H.H. Lee, J.Y. Park, Microw. Opt. Technol. Lett. 49, 1074–1077 (2007)

    Article  Google Scholar 

  35. S.R. Best, IEEE Antennas Wirel. Propag. Lett. 8, 572–575 (2009)

    Article  Google Scholar 

  36. B.D. Wiltshire, et al., 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (2018), https://doi.org/10.1109/ANTEM.2018.8572906

  37. M.U. Memon, S. Lim, Microfluid Sens. 143, 1–13 (2018)

    Google Scholar 

  38. A. Nosrati et al., IET Microw. Antennas Propag. 14, 1229–1240 (2020)

    Article  Google Scholar 

  39. A. Daliri et al., Phys. Sens. 14, 595–605 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel—(CAPES) and by CNPq. We are grateful to the Federal University of Rio Grande do Norte (UFRN) and Federal Rural University of the Semi‐Arid (UFERSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de A. P. Magno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magno, J.A.P., Neto, V.P.S., Cavalcante, C.E.C. et al. Synthesis and characterization of organic substrate in the S band for application in microstrip antennas. J Mater Sci: Mater Electron 32, 1829–1841 (2021). https://doi.org/10.1007/s10854-020-04951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04951-x

Navigation