Skip to main content
Log in

Synthesis of MIL-101-derived bimetal–organic framework and applications for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, to broaden the application of metal–organic framework (MOF) materials in electronic functional materials, a simple solvothermal method was adopted to introduce bimetals, and metal–organic framework compounds (MIL-101 (Fe), MIL-101 (Fe, Co), MIL-101 (Fe, Cu)) acted as the templates. The hollow structures of Fe2O3, CoFe2O4, and CuFe2O4 were formed through the simple calcinations at 600 °C for 3 h in Ar atmosphere. When the mentioned materials exhibiting hollow structures were tested as the negative electrode of a lithium-ion battery, introducing bimetals was reported to be able to improve their electrochemical performance. For instance, CoFe2O4 and CuFe2O4 were cycled 300 times under a high current density of 1000 mA/g, and the reversible capacity remained to be 978 mAh/g and 774 mAh/g. When 200 cycles were performed under a current density of 200 mA/g, these materials exhibited high specific capacities of 1118 mAh/g and 1155 mAh/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.Y. Wang, L. Zhou, X.W. Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903–1911 (2012)

    Article  CAS  Google Scholar 

  2. J. Chen, L. Xu, W. Li, X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582–586 (2005)

    Article  CAS  Google Scholar 

  3. N. Sharma, S. Szunerits, R. Boukherroub, R. Ye, S. Ogale, A dual-ligand Fe-MOF based robust high capacity Li ion battery anode and its use in a flexible battery format for electro-thermal heating. Acs Appl. Energy Mater. 2, 4450–4457 (2019)

    Article  CAS  Google Scholar 

  4. B.J. Zhu, Z.B. Liang, D.G. Xia, R.Q. Zou, Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater. 23, 757–771 (2019)

    Article  Google Scholar 

  5. Y. Bai, M. Zeng, X. Wu, Y.Q. Zhang, J. JianWu Wen, Li, Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage. Appl. Surf. Sci. 510, 145477 (2020)

    Article  CAS  Google Scholar 

  6. X. Li, H. Guo, Z. Wang, Z. Yu, Hollow Si/C composite as anode material for high performance lithium-ion battery. Powder Technol. 299, 178–184 (2016)

    Article  Google Scholar 

  7. J.W. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, F. Paesani, S.M. Cohen, Y.S. Meng, MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 3, 4738–4744 (2015)

    Article  CAS  Google Scholar 

  8. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)

    Article  CAS  Google Scholar 

  9. G.T. Qin, L. Ding, M. Zeng, K.B. Zhang, Y.Q. Zhang, Y. Bai, J.W. Wen, J. Li, Mesoporous Fe2O3/N-doped graphene composite as an anode material for lithium ion batteries with greatly enhanced electrochemical performance. J. Electroanal. Chem. 866, 114176 (2020)

    Article  CAS  Google Scholar 

  10. Y. Wang, D. Su, A. Ung, J.H. Ahn, G. Wang, Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23, 055402 (2012)

    Article  CAS  Google Scholar 

  11. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172, 379–387 (2007)

    Article  CAS  Google Scholar 

  12. L. Wu, Q. Xiao, Z. Li, G. Lei, P. Zhang, L. Wang, CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance. Solid State Ion. 215, 24–28 (2012)

    Article  CAS  Google Scholar 

  13. Z.H. Li, T.P. Zhao, X.Y. Zhan, D.S. Gao, Q.Z. Xiao, G.T. Lei, High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta 55, 4594–4598 (2010)

    Article  CAS  Google Scholar 

  14. R.K. Selvan, N. Kalaiselvi, C.O. Augustin, C.H. Doh, C. Sanjeeviraja, CuFe2O4/SnO2 nanocomposites as anodes for Li-ion batteries. J. Power Sources 157, 522–527 (2006)

    Article  Google Scholar 

  15. G. Qin, X. Wu, J. Wen, J. Li, M. Zeng, A core–shell NiFe2O4@SiO2 structure as a high-performance anode material for lithium-ion batteries. ChemElectroChem 6, 911–916 (2019)

    Article  CAS  Google Scholar 

  16. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47, 4252–4254 (2011)

    Article  CAS  Google Scholar 

  17. G.T. Qin, M. Zeng, X. Wu, J. Wen, J. Li, Fabrication of Fe2O3@TiO2 core–shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci.-Mater. El. 29, 12944–12950 (2018)

    Article  CAS  Google Scholar 

  18. Lei, He, Yanan, Dong, Yane, Zheng, Qingming, Jia, Shaoyun, A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 361, 85–94 (2019)

    Article  Google Scholar 

  19. Y. Yao, M.T. Mcdowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    Article  CAS  Google Scholar 

  20. X. Wu, M. Zeng, J.W. Wen, J. Li, Electrochemical studies of MgFe2O4@TiO2 core–shell nanospheres as anode material for lithium battery applications. J. Mater. Sci.-Mater. El. 29, 17872–17880 (2018)

    Article  CAS  Google Scholar 

  21. H. Yu, H. Fan, B. Yadian, H. Tan, Q. Yan, General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. Acs Appl. Energy Mater. 7, 26751 (2015)

    Article  CAS  Google Scholar 

  22. K.Y. Dong, S.L. Su, G.C. Papaefthymiou, J.Y. Ying, Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 18, 614–619 (2006)

    Article  Google Scholar 

  23. H.B. Li, J.Y. Chen, M. Liu, M. Feng, J. Hua, Preparation and characterization of CoFe2O4/SiO2 nanocomposites. Chem. J. Chin. Univ. 28, 614–616 (2007)

    Google Scholar 

  24. H. Chen, Z. He, Z. Huang, L. Song, C. Shen, J. Liu, The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery. Ceram. Int. 43, 8616–8624 (2017)

    Article  CAS  Google Scholar 

  25. J. Wang, G. Yang, L. Wang, W. Yan, W. Wei, C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries. J. Alloys Compound. 693, 110–117 (2017)

    Article  CAS  Google Scholar 

  26. S. Balamurugan, N. Naresh, I. Prakash, N. Satyanarayana, Ion and electron-conducting additive effect on Li-ion charge storage performance of CuFe2O4/SiO2 composite aerogel anode. Cerm. Int. 46, 25330–25340 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zeng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zeng, M., Wang, H. et al. Synthesis of MIL-101-derived bimetal–organic framework and applications for lithium-ion batteries. J Mater Sci: Mater Electron 32, 1778–1786 (2021). https://doi.org/10.1007/s10854-020-04946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04946-8

Navigation