Skip to main content
Log in

Investigation of sheet resistance variation with annealing temperature and development of highly sensitive and selective room temperature ammonia gas sensor using functionalized graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, a highly sensitive room temperature ammonia gas sensor with good selective property has been fabricated using functionalized graphene oxide (GO). Sheet resistance variation of the GO and functionalized GO have been observed at different annealing temperature and it has been observed that the sheet resistance decreases with the increases of the annealing temperature. The response of the sensor was calculated by recording the change in the resistance of the functionalized GO in the presence of ammonia gas. Various other sensing parameters such as sensor response & recovery time, repeatability, and long-term stability of the sensor have also been investigated. The response of the sensor was observed for ammonia concentration 100–3000 ppm at room temperature with relative humidity (RH) of 40%. The maximum sensor response observed is in the range of 32.7% to 64.9% for ammonia concentration 100–3000 ppm with response and recovery time, 10 s and 90 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    CAS  Google Scholar 

  2. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491 (2008)

    CAS  Google Scholar 

  3. J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N.R. Wilson, The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50(14), 3173–3177 (2011)

    CAS  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    CAS  Google Scholar 

  5. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)

    CAS  Google Scholar 

  6. R. Ghosh, A. Midya, S. Santra, S.K. Ray, P.K. Guha, Chemically reduced graphene oxide for ammonia at room temperature. ACS Appl. Mater. Interfaces 5(15), 7599–7603 (2013)

    CAS  Google Scholar 

  7. S. Rani, D. Kumar, M. Kumar, Improvement in humidity sensing of graphene oxide by amide functionalization. Sens. Transducers 193(10), 100 (2015)

    CAS  Google Scholar 

  8. P. Sahatiya, S.K. Puttapati, V.V. Srikanth, S. Badhulika, Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flexible Print. Electron. 1(2), 025006 (2016)

    Google Scholar 

  9. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)

    CAS  Google Scholar 

  10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    CAS  Google Scholar 

  11. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25 (2009)

    CAS  Google Scholar 

  12. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    CAS  Google Scholar 

  13. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    CAS  Google Scholar 

  14. O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77(12), 125416 (2008)

    Google Scholar 

  15. R. Ghosh, A. Singh, S. Santra, S.K. Ray, A. Chandra, P.K. Guha, Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sens. Actuators B 205, 67–73 (2014)

    CAS  Google Scholar 

  16. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    CAS  Google Scholar 

  17. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403 (2009)

    CAS  Google Scholar 

  18. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    CAS  Google Scholar 

  19. U. Hofmann, A. Frenzel, The reduction of graphite oxide with hydrogen sulphide. Kolloid Z. 68(2), 149–151 (1934)

    CAS  Google Scholar 

  20. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)

    CAS  Google Scholar 

  21. S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9(16), 8778–8881 (2019)

    CAS  Google Scholar 

  22. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)

    CAS  Google Scholar 

  23. V. Ramalakshmi, J. Balavijayalakshmi, Decoration and functionalization of graphene oxide nanocomposites for sensing applications. Mater. Today Proc. 18, 1746–1752 (2019)

    CAS  Google Scholar 

  24. K. Toda, R. Furue, S. Hayami, Recent progress in applications of graphene oxide for gas sensing: a review. Anal. Chim. Acta 878, 43–53 (2015)

    CAS  Google Scholar 

  25. M.H. Chakrabarti, C.T.J. Low, N.P. Brandon, V. Yufit, M.A. Hashim, M.F. Irfan, J. Akhtar, E. Ruiz-Trejo, M.A. Hussain, Progress in the electrochemical modification of graphene-based materials and their applications. Electrochim. Acta 107, 425–440 (2013)

    CAS  Google Scholar 

  26. U. Latif, F.L. Dickert, Graphene hybrid materials in gas sensing applications. Sensors 15(12), 30504–30524 (2015)

    CAS  Google Scholar 

  27. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010)

    CAS  Google Scholar 

  28. V. Blechta, K.A. Drogowska, V. Vales, M. Kalbac, Adsorption site-dependent mobility behavior in graphene exposed to gas oxygen. J. Phys. Chem. C 122(37), 21493–21499 (2018)

    CAS  Google Scholar 

  29. M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018)

    Google Scholar 

  30. Y.H. Kim, J.S. Park, Y.R. Choi, S.Y. Park, S.Y. Lee, W. Sohn, Y.S. Shim, J.H. Lee, C.R. Park, Y.S. Choi, B.H. Hong, Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. J. Mater. Chem. A 5(36), 19116–19125 (2017)

    CAS  Google Scholar 

  31. R. Kumar, A. Kumar, R. Singh, R. Kashyap, R. Kumar, D. Kumar, M. Kumar, Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide. Mater. Sci. Semicond. Process. 110, 104920 (2020)

    CAS  Google Scholar 

  32. F. Khurshid, M. Jeyavelan, K. Takahashi, M.S.L. Hudson, S. Nagarajan, Aryl fluoride functionalized graphene oxides for excellent room temperature ammonia sensitivity/selectivity. RSC Adv. 8(36), 20440–20449 (2018)

    CAS  Google Scholar 

  33. M.A. Kang, S. Ji, S. Kim, C.Y. Park, S. Myung, W. Song, S.S. Lee, J. Lim, K.S. An, Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv. 8(22), 11991–11996 (2018)

    CAS  Google Scholar 

  34. R. Kumar, A. Kumar, R. Singh, R. Kashyap, R. Kumar, D. Kumar, M. Kumar, Room temperature ammonia gas sensor using meta toluic Acid functionalized graphene oxide. Mater. Chem. Phys. 240, 121922 (2019)

    Google Scholar 

  35. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2(01), 58–63 (2014)

    Google Scholar 

  36. L.Y. Meng, S.J. Park, Preparation and characterization of reduced graphene nanosheets via pre-exfoliation of graphite flakes. Bull. Korean Chem. Soc. 33(1), 209–214 (2012)

    CAS  Google Scholar 

  37. E.C. Mattson, K. Pande, M. Unger, S. Cui, G. Lu, M. Gajdardziska-Josifovska, M. Weinert, J. Chen, C.J. Hirschmugl, Exploring adsorption and reactivity of NH3 on reduced graphene oxide. J. Phys. Chem. C 117(20), 10698–10707 (2013)

    CAS  Google Scholar 

  38. S. Tang, Z. Cao, Adsorption and dissociation of ammonia on graphene oxides: a first-principles study. J. Phys. Chem. C 116(15), 8778–8791 (2012)

    CAS  Google Scholar 

  39. A. Kalita, S. Hussain, A.H. Malik, N.V. Subbarao, P.K. Iyer, Vapor phase sensing of ammonia at the sub-ppm level using a perylene diimide thin film device. J. Mater. Chem. C 3(41), 10767–10774 (2015)

    CAS  Google Scholar 

  40. S. Yoo, X. Li, Y. Wu, W. Liu, X. Wang, W. Yi, Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J. Nanomater. (2014). https://doi.org/10.1155/2014/497384

    Article  Google Scholar 

  41. W. Kang, S. Li, Preparation of fluorinated graphene to study its gas sensitivity. RSC Adv. 8(41), 23459–23467 (2018)

    CAS  Google Scholar 

  42. M.V. Katkov, V.I. Sysoev, A.V. Gusel’Nikov, I.P. Asanov, L.G. Bulusheva, A.V. Okotrub, A backside fluorine-functionalized graphene layer for ammonia detection. Phys. Chem. Chem. Phys. 17(1), 444–450 (2015)

    CAS  Google Scholar 

  43. Y.R. Choi, Y.G. Yoon, K.S. Choi, J.H. Kang, Y.S. Shim, Y.H. Kim, H.J. Chang, J.H. Lee, C.R. Park, S.Y. Kim, H.W. Jang, Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91, 178–187 (2015)

    CAS  Google Scholar 

  44. Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng, Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9(1), 251 (2014)

    Google Scholar 

  45. R. Kumar, R. Singh, A. Kumar, R. Kashyap, D. Kumar, M. Kumar, Chemically functionalized graphene oxide thin films for selective ammonia gas sensing. Mater. Res. Express 7(1), 015612 (2020)

    CAS  Google Scholar 

  46. A. Bannov, J. Prášek, O. Jašek, L. Zajíčková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17(2), 320 (2017)

    Google Scholar 

  47. G. Jeevitha, R. Abhinayaa, D. Mangalaraj, N. Ponpandian, P. Meena, V. Mounasamy, S. Madanagurusamy, Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH 3 at room temperature. Nanoscale Adv. 1(5), 1799–1811 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. C.C Tripathi, Director, UIET, Kurukshetra for providing the thin film deposition technique to carry out this work. The first author is also very thankful to World Bank TEQIP, Govt. of India, for proving research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, A., Singh, R. et al. Investigation of sheet resistance variation with annealing temperature and development of highly sensitive and selective room temperature ammonia gas sensor using functionalized graphene oxide. J Mater Sci: Mater Electron 32, 1716–1728 (2021). https://doi.org/10.1007/s10854-020-04940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04940-0

Navigation