Skip to main content
Log in

Synthesis and characterisations of non-covalently bound aniline–indium(III) porphyrins

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aniline–indium(III) porphyrin chromophoric systems in which aniline is bonded non-covalently with porphyrin macrocycles were obtained by the treatment of each of the indium(III) porphyrins, i.e. tetra-p-methoxyphenyl indium(III) porphyrin and tetra-p-chlorophenyl indium(III) porphyrin with neutral aniline in CHCl3/CH3OH mixtures. The prepared aniline–indium(III) porphyrin chromophoric systems were successfully characterised by using FT-IR spectroscopy, 1H NMR spectroscopy and ESI-mass spectrometry. The 1H NMR and UV–Visible absorption spectroscopic studies of aniline–indium(III) porphyrin systems were further recorded as a function of pure aniline concentration in proper solvents. The results of these spectroscopic studies indicate the existence of interchromophoric interactions between aniline and indium(III) porphyrins which increase with the increase in pure aniline concentrations. Powder X-ray diffraction (PXRD) measurement data reflects change in crystalline phases of parent complexes upon incorporation of aniline molecules. Thermogravimetric analysis (TGA) indicates that aniline-incorporated indium(III) porphyrins are less thermally stable than their parent complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Satake, Kobuke, Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling. Org. Biomol. Chem. 5, 1679–1691 (2007)

    CAS  Google Scholar 

  2. R. Takahashi, Y. Kobuke, Hexameric macroring of gable-porphyrins as a light-harvesting antenna mimic. J. Am. Chem. Soc. 125, 2372–2373 (2003)

    CAS  Google Scholar 

  3. J. Otsuki, Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A. 6, 6710–6753 (2018)

    CAS  Google Scholar 

  4. C. Harriman, Chem. Commun. 51, 11745–11756 (2015)

    CAS  Google Scholar 

  5. T. Hasobe, K. Saito, P.V. Kamat, V. Troiani, H. Qiu, N. Solladie, K.S. Kim, J.K. Park, D. Kim, F. D’Souza, S. Fukuzumi, Organic solar cells: supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J. Mater. Chem. 17, 4160–4170 (2007)

    CAS  Google Scholar 

  6. T. Hasobe, A.S.D. Sandanayaka, T. Wada, Y. Araki, Fullerene-encapsulated porphyrin hexagonal nanorods: an anisotropic donor–acceptor composite for efficient photoinduced electron transfer and light energy conversion. Chem. Commun. 2008, 3372–3374 (2008)

    Google Scholar 

  7. J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001)

    CAS  Google Scholar 

  8. T. Kitamura, S. Nakaso, N. Mizoshita, Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. J. Am. Chem. Soc. 127, 14769–14775 (2005)

    CAS  Google Scholar 

  9. L. Wang, Y. Chen, Y. Bian, J. Jiang, Porphyrin nanocrystal synthesized via chemical reaction route: ph-sensitive reversible transformation between nanocrystals and bulk single crystal. J. Phys. Chem. C. 117, 17352–17359 (2013)

    CAS  Google Scholar 

  10. Z.C. Wang, Z.Y. Li, C.J. Medforth, J.A. Shelnutt, Self-assembly and self metallization of porphyrin nanosheets. J. Am. Chem. Soc. 129, 2440–2441 (2007)

    CAS  Google Scholar 

  11. D. Yan, Y. Zhou, J. Hou, Supramolecular self-assembly of macroscopic tubes. Science 303, 65–67 (2004)

    CAS  Google Scholar 

  12. T. Shimizu, M. Masuda, H. Minamikawa, Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1444 (2005)

    CAS  Google Scholar 

  13. L. Zhi, T. Gorelik, J. Wu, U. Kolb, K. Mullen, Nanotubes fabricated from Ni-naphthalocyanine by a template method. J. Am. Chem. Soc. 127, 12792–12793 (2005)

    CAS  Google Scholar 

  14. J.S. Hu, Y.G. Guo, H.P. Liang, L.J. Wan, L. Jiang, Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 127, 17090–17095 (2005)

    CAS  Google Scholar 

  15. R. Sun, L. Wang, J. Tian, X. Zhang, J. Jiang, Self-assembled nanostructures of optically active phthalocyanine derivatives: effect of central metal ion on the morphology, dimension, and handedness. Nanoscale. 4, 6990–6996 (2012)

    CAS  Google Scholar 

  16. Q.-Y. Liu, Q.-Y. Jia, J.-Q. Zhu, Q. Shao, J.-F. Fan, D.-M. Wang, Y.-S. Yin, Highly ordered arrangement of meso-tetrakis(4-aminophenyl)porphyrin in self-assembled nanoaggregates via hydrogen bonding. Chin. Chem. Lett. 25, 752–756 (2014)

    CAS  Google Scholar 

  17. Z. Wang, C.J. Medforth, J.A. Shelnutt, Self-metallization of photocatalytic porphyrin nanotubes. J. Am. Chem. Soc. 126, 16720–16721 (2004)

    CAS  Google Scholar 

  18. F. Dini, E. Martinelli, G. Pomarico, R. Paolesse, D. Monti, D. Filippini, A. D’Amico, I. Lundstrom, C. Di Natale, Chemical sensitivity of self-assembled porphyrin nano-aggregates. Nanotechnology. 20, 055502 (2009)

    Google Scholar 

  19. Z. Wang, L.E. Lybarger, W. Wang, C.J. Medforth, J.E. Miller, J.A. Shelnutt, Monodisperse porphyrin nanospheres synthesized by coordination polymerization. Nanotechnology. 19, 395604 (2008)

    Google Scholar 

  20. W. Kruger, J.-H. Fuhrhop, Evolution of hydrogen from photochemically reduced water-soluble tin(IV)-porphyrins. Angew. Chem. Int. Ed. Engl. 21, 131–131 (1982)

    Google Scholar 

  21. J.A. Shelnutt, Photoreduction of methylviologen sensitized by dihydroxytin(IV) uroporphyrin. J. Am. Chem. Soc. 105, 7179–7180 (1983)

    CAS  Google Scholar 

  22. X.-Z. Song, S.-L. Jia, M. Miura, J.-G. Ma, J.A. Shelnutt, Electron transfer photosensitized by a tin lipoporphyrin in solution, micelles, and at water–organic solvent interfaces. J. Photochem. Photobiol. A 113, 233–241 (1998)

    CAS  Google Scholar 

  23. K.M. Smith, Porphyrin and Metalloporphyrin: General Features of the Structure and Chemistry of Porphyrin Compounds (Elsevier, Amsterdam, 1975).

    Google Scholar 

  24. L.R. Milgrom, The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds (Oxford University Press, Oxford, 1997).

    Google Scholar 

  25. J.J. Mieyal, R.S. Ackerman, J.L. Blumer, L.S. Freeman, Characterization of enzyme-like activity of human haemoglobin: properties of the hemoglobin-P-450 reductase-coupled aniline hydroxylase system. J. Biol. Chem. 251, 3436–3441 (1976)

    CAS  Google Scholar 

  26. O. Hayaishi, O. Takikawa, M. Sono, R. Yoshida, in Microsomes, Drug Oxidation and Chemical Carcinogenesis. ed. by M.J. Coon, A.H. Conney, R.W. Estabrook, H.V. Gelboin, J.R. Gillette, P.J. O’Brien (New York, Academic Press, 1980), pp. 1–13

    Google Scholar 

  27. R. Rennebeq, F. Scheller, K. Ruckpaul, J. Pirrwitz, P. Mohr, NADPH and H2O2-dependent reactions of cytochroME P-450LM compared with peroxidase catalysis. FEBS Lett. 96, 349–353 (1978)

    Google Scholar 

  28. P.A. Adams, M.C. Berman, D.A. Baldwin, The participation of both O2. and HO2 species in the haemin-catalysed para-hydroxylation of aniline. J. Chem. Soc. Chem. Commun. 1979, 856–858 (1979)

    Google Scholar 

  29. P.A. Adams, C. Adams, M.C. Berman, D.A. Baldwin, H2O2 and alkyl hydroperoxide-supported para hydroxylation of aniline by alkaline hematin. J. Inorg. Biochem. 17, 261–267 (1982)

    CAS  Google Scholar 

  30. P.A. Adams, C. Adams, M.C. Berman, M.C. Lawrence, The nature of heme—aniline interactions during hemin-mediated oxygen activation and insertion reactions. J. Inorg. Biochem. 20, 291–297 (1984)

    CAS  Google Scholar 

  31. D. Sahoo, M.G. Quesne, S.P. de Visser, S.P. Rath, Hydrogen-bonding interactions trigger a spin-flip in iron(III) porphyrin complexes. Angew. Chem. Int. Ed. 54, 4796–4800 (2015)

    CAS  Google Scholar 

  32. R. Gottama, P. Srinivasan, D.D. La, S.V. Bhosale, Improving the photocatalytic activity of polyaniline and a porphyrin via oxidation to obtain a salt and a charge-transfer complex. New J. Chem. 41, 14595–14601 (2017)

    Google Scholar 

  33. P. Dechan, G.D. Bajju, P. Sood, U.A. Dar, Crystallographic elucidations of indium(III) porphyrin conformations, morphology and aggregation behaviour: comparative optical study of free base porphyrins and their indium(III) derivatives at varying Ph. J. Mol. Struct. 1183, 87–99 (2019)

    CAS  Google Scholar 

  34. P. Dechan, G.D. Bajju, Synthesis and spectroscopic properties of axial phenoxide and para amino phenoxide incorporated indium (III) porphyrins. J. Mol. Struct. 1195, 140–152 (2019)

    CAS  Google Scholar 

  35. D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, On the preparation of metalloporphyrins. J. Org. Chem. 32, 476–476 (1967)

    CAS  Google Scholar 

  36. M. Bhatti, W. Bhatti, E. Mast, Preparation of indium (III) tetraphenylporphine complexes. J. Inorg. Nucl. Chem. 8, 133–137 (1972)

    CAS  Google Scholar 

  37. P. Dechan, G.D. Bajju, P. Sood, U.A. Dar, Synthesis and single crystal structure of a new polymorph of 5,10,15,20-tetrakis-(4-chlorophenyl) porphyrin, H2TTPCl4: spectroscopic investigation of aggregation of H2TTPCl4. Mol. Cryst. Liq. Cryst. 666, 99–103 (2018)

    Google Scholar 

  38. L.J. Boucher, J.J. Katz, The infared spectra of metalloporphyrins (4000–160 cm-1). J. Am. Chem. Soc. 89, 1340–1345 (1967)

    CAS  Google Scholar 

  39. H. Zhu, S. Peng, W. Jiang, Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes. Sci. World J. 2013, 940153 (2013)

    Google Scholar 

  40. R.G. Ball, K.M. Lee, A.G. Marshall, J. Trotter, Crystal and molecular structure of (5,10,15,20-tetraphenylporphinato)mdium(in) Chloride1a. Inorg. Chem. 19, 1463–1469 (1980)

    CAS  Google Scholar 

  41. M. Albrecht, S. Mirtschin, M. de Groot, I. Janser, J. Runsink, G. Raabe, M. Kogej, C.A. Schalley, R. Frohlich, Hierarchical assembly of helicate-type dinuclear titanium(IV) complexes. J. Am. Chem. Soc. 127, 10371–10387 (2005)

    CAS  Google Scholar 

  42. K.M. Knoblock, C.J. Silvestri, D.M. Collard, Stacked conjugated oligomers as molecular models to examine interchain interactions in conjugated materials. J. Am. Chem. Soc. 128, 13680–13681 (2006)

    CAS  Google Scholar 

  43. T. Kaikawa, K. Takimiya, Y. Aso, T. Otsubo, Synthesis and spectroscopic properties of [2.2]quinquethiophenophane as an ideal π-dimer model. Org. Lett. 2, 4197–4199 (2000)

    CAS  Google Scholar 

  44. T. Sakai, T. Satou, T. Kaikawa, K. Takimiya, T. Otsubo, Y. Aso, Syntheses, structures, spectroscopic properties, and π-dimeric interactions of [n.n]quinquethiophenophanes. J. Am. Chem. Soc. 127, 8082–8089 (2005)

    CAS  Google Scholar 

  45. K. Mroczynska, M. Kaczorowska, E. Kolehmainen, I. Grubecki, M. Pietrzak, B. Ośmiałowski, Conformational equilibrium in supramolecular chemistry: dibutyltriuret case. Beilstein J. Org. Chem. 11, 2105–2116 (2015)

    CAS  Google Scholar 

  46. V. Lekar, L.A. Yakovishin, E.V. Vetrova, M.I. Rudneva, N.I. Borisenko, Mass spectrometry of the self-association and complexation of triterpene saponins and cholesterol. J. Anal. Chem. 66, 1276–1280 (2011)

    CAS  Google Scholar 

  47. L. Ceraulo, G. Giorgi, V.T. Liveri, D. Bongiorno, S. Indelicato, F.D. Gaudio, S. Indelicato, Mass spectrometry of surfactant aggregates. Eur. J. Mass Spectrom. 17, 525–541 (2011)

    CAS  Google Scholar 

  48. N.J. Silvernail, M.M. Olmstead, B.C. Noll, W.R. Scheidt, Tetragonal to triclinic: a phase change for [Fe(TPP)(NO)]. Inorg. Chem. 48, 971–977 (2009)

    CAS  Google Scholar 

  49. G.C. Shearman, G. Yahioglu, J. Kirstein, L.R. Milgrom, J.M. Seddon, Synthesis and phase behaviour of b-octaalkyl porphyrins. J. Mater. Chem. 19, 598–604 (2009)

    CAS  Google Scholar 

  50. G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, X. Shen, Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012)

    CAS  Google Scholar 

  51. C. Hancock, G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86, 1–12 (1997)

    CAS  Google Scholar 

  52. H.M. Ju, S.H. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes. J. Korean Phys. Soc. 57, 1649–1652 (2010)

    CAS  Google Scholar 

  53. M. Sirajuddin, S. Ali, A. Badshah, Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B 124, 1–19 (2013)

    CAS  Google Scholar 

  54. H. Scheer, J.J. Katz, in Porphyrins and Metalloporphyrins. ed. by K.M. Smith (Elsevier, Amsterdam, 1975)

    Google Scholar 

  55. W.I. White, in The Porphyrins. ed. by D. Dolphin (Academic, New York, 1978)

    Google Scholar 

  56. V. Gonzalez-Ruiz, A.I. Olives, M.A. Martin, P. Ribelles, M.T. Ramos, J.C. Menendez, An overview of analytical techniques employed to evidence drug-DNA interactions. Appl. Des. Genosens. Intech. (2011). https://doi.org/10.5772/13586

    Article  Google Scholar 

  57. D. Leersnyder, L.D. Gelder, I.V. Driessche, P. Vermeir, Revealing the importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles: a case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium. Nanomaterials 9, 1684–1694 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Council of Scientific and Industrial Research (CSIR) India (Grant No. 09/100(0190)/2016-EMR-I). Authors acknowledge the post graduate department of Chemistry, University of Jammu for recording 1H NMR spectra, UV-Visible absorption spectra and thermal analyses of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauri Devi Bajju.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dechan, P., Anand, S., Sood, P. et al. Synthesis and characterisations of non-covalently bound aniline–indium(III) porphyrins. J Mater Sci: Mater Electron 32, 1703–1715 (2021). https://doi.org/10.1007/s10854-020-04939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04939-7

Navigation