Skip to main content
Log in

Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As per this work, it is aimed to explore and analyze some dielectric characteristics—such as dielectric constant (\({\varepsilon }^{{\prime}}\)), dielectric loss (\({\varepsilon }{{^{\prime\prime}}}\)), loss tangent (\(\mathrm{tan}\delta \)), AC conductivity (σac), and real (\({M}{^{\prime}}\)) and imaginary (\({M}{{^{\prime\prime}}}\)) parts of the electric modulus—of Al/HfO2/p-Si Schottky diode design based on temperature and frequency. The HfO2 layer was grown on p-Si substrates by atomic layer deposition method. Al metal was deposited on the upper part of this structure as Schottky contact by e-beam evaporation technique. This structure has been studied in different applied bias voltages and frequencies at temperature ranging between 300 and 360 K. The capacitance–voltage–frequency (CVf) and conductance-voltage-frequency (G/ωVf) characteristics of Al/HfO2/p-Si structure were measured in the frequency range of 10 kHz to 2 MHz by sweeping bias voltage levels (± 4 V, 50 mV steps). The experimental results and analyses confirmed that these dielectric properties of Al/HfO2/p-Si Schottky diode structure were very dependent on the frequency, bias voltage and temperature according to the presence of the interface states and distribution characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Atasoy, M.A. Olgar, E. Bacaksiz, J. Mater. Sci. 30, 10435–10442 (2019)

    CAS  Google Scholar 

  2. F.A. Mir, S. Rehman, K. Asokan, S.H. Khan, G.M. Bha, J. Mater. Sci. 25, 1258–1263 (2014)

    CAS  Google Scholar 

  3. H.H. Gullu, D.E. Yildiz, J. Mater. Sci. 30, 19383–19393 (2019)

    CAS  Google Scholar 

  4. J.B. Park, W.S. Lim, B.J. Park, I.H. Park, Y.W. Kim, G.Y. Yeom, J. Phys. D Appl. Phys. 42, 055202 (2009)

    Google Scholar 

  5. C. Buttay, H.-Y. Wong, B. Wang, M. Xiao, C. Dimarino, Y. Zhang, Microelectron. Reliab. 114, 113743 (2020)

  6. G. He, L.Q. Zhu, M. Liu, Q. Fang, L.D. Zhang, Appl. Surf. Sci. 253, 3413 (2007)

    CAS  Google Scholar 

  7. S.Y. Lee, S. Chang, J.S. Lee, Thin Solid Films 518, 3030 (2010)

    CAS  Google Scholar 

  8. M.H. Al-Dharob, A. Kokce, D.A. Aldemir, A.F. Ozdemir, S. Altındal, J. Phys. Chem. Solids 144, 10952 (2020)

    Google Scholar 

  9. Y. Chen, J. Kim, S.-D. Jang, Mater. Chem. Phys. 132, 591–595 (2012)

    CAS  Google Scholar 

  10. T.T. Anh Tuan, D.-H. Kuo, Mater. Sci. Semicond. Process. 30, 314–320 (2015)

  11. V. Balasubramani, J. Chandrasekaran, T.D. Nguyen, S. Maruthamuthu, R. Marnadu, P. Vivek, S. Sugarthi, Sensors Actuators A 315, 112333 (2020)

    CAS  Google Scholar 

  12. P.R. Sekhar Reddy, V. Janardhanam, K.-H. Shim, V. Rajagopal Reddy, S.-N. Lee, S.-J. Park, C.-J. Choi, Vacuum 171, 109012 (2020)

    Google Scholar 

  13. O. Pakma, Int. J. Photoenergy 7, 858350 (2012)

  14. A. Vinod, M. Singh Rathore, N. Srinivasa Rao, Vacuum 155, 339–344 (2018)

    CAS  Google Scholar 

  15. R. Kumar Jha, P. Sıngh, M. Goswamı, B.R. Sıngh, J. Electron. Mater. 49, 2 (2020)

    Google Scholar 

  16. M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, M. Grasserbauer, Thin Solid Films 250, 72–80 (1994)

    CAS  Google Scholar 

  17. A. Karabulut, A. Türüt, S. Karatas, J. Mol. Struct. 1157, 513–518 (2018)

    CAS  Google Scholar 

  18. B.J. Harder, Surf. Coat. Technol. 384, 125311 (2020)

    CAS  Google Scholar 

  19. C.-F. Liu, X.-G. Tang, X.-B. Guo, Q.-X. Liu, Y.-P. Jiang, Z.-H. Tang, W.-H. Li, Mater. Des. 188, 108465 (2020)

    CAS  Google Scholar 

  20. Y. Ohshita, A. Ogura, A. Hoshino, S. Hiiro, H. Machid, J. Cryst. Growth 233, 292–297 (2001)

    CAS  Google Scholar 

  21. S.-N. Choi, S.-E. Moon, S.-M. Yoon, Ceram. Int. 45, 22642–22648 (2019)

    CAS  Google Scholar 

  22. I. Karaduman, O. Barın, M. Ozer, S. Acar, J. Electr. Mater. 45, 8 (2016)

    Google Scholar 

  23. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendarn, Physica B 594, 412336 (2020)

    CAS  Google Scholar 

  24. Ş Özden, O. Pakma, GU J Sci 30(3), 273–280 (2017)

    Google Scholar 

  25. S. Bengi, M.M. Bülbül, Curr. Appl. Phys. 13, 1819–1825 (2013)

    Google Scholar 

  26. I.R. Kaufmann, A. Pick, M.B. Pereira, H. Boudinov, Thin Solid Films 621, 184–187 (2017)

    CAS  Google Scholar 

  27. S. Al-Gharabli, W. Kujawski, H.A. Arafat, J. Kujawa, J. Membr. Sci. 541, 567–579 (2017)

    CAS  Google Scholar 

  28. M. Gutowski, J.E. Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin, Appl. Phys. Lett. 80, 1897–1899 (2002)

    CAS  Google Scholar 

  29. Y. Xu, J. Bi, Y. Li, K. Xi, L. Fan, M. Liu, M. Sandip, Li Luo. Microelectron. Reliab. 100–101, 113355 (2019)

    Google Scholar 

  30. F.Z. Acar, A. Buyukbas-Ulusan, A. Tataroglu, J. Mater. Sci. 29, 12553–12560 (2018)

    CAS  Google Scholar 

  31. A. Buyukbas-Ulusan, A. Tataroglu, J. Mater. Sci. 31, 9888–9893 (2020)

    CAS  Google Scholar 

  32. C. Li, J.H. Hsieh, M.T. Hung, B.Q. Huang, Vacuum 118, 125–132 (2015)

    CAS  Google Scholar 

  33. D.W. Choi, J.S. Park, Surf. Coat. Technol. 259, 238–243 (2014)

    CAS  Google Scholar 

  34. W.J. Maeng, D.W. Choi, J. Park, J.S. Park, J. Alloy Compd. 649, 216–221 (2015)

    CAS  Google Scholar 

  35. I. Iatsunskyi, M. Jancelewicz, G. Nowaczyk, M. Kempiński, B. Peplińska, M. Jarek, K. Załęski, S. Jurga, V. Smyntyna, Thin Solid Films 589, 303–308 (2015)

    CAS  Google Scholar 

  36. D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251–261 (2003)

    CAS  Google Scholar 

  37. S. Gierałtowska, D. Sztenkiel, E. Guziewicz, M. Godlewski, G. Luka, B.S. Witkowski, L. Wachnicki, E. Lusakowska, T. Dietl, M. Sawicki, Acta Phys. Pol. 119(5), 692–695 (2011)

    Google Scholar 

  38. W.J. Zhu, T.-P. Ma, T. Tamagawa, J. Kim, Y. Di, IEEE Electron Dev. Lett. 23, 97–99 (2002)

    CAS  Google Scholar 

  39. J. Gao, G. He, Z. Sun, H. Chen, C. Zheng, P. Jin, D. Xiao, M. Liu, J. Alloy Compd. 667, 352–358 (2016)

    CAS  Google Scholar 

  40. A. Türüt, Turk. J. Phys. 44, 302–347 (2020)

    Google Scholar 

  41. I.S. Yahia, H.Y. Zahran, F.H. Alamri, M. AslamManthrammel, S. AlFaify, A.M. Ali, Physica B 543, 46–53 (2018)

    CAS  Google Scholar 

  42. M. Gülnahar, H. Efeoğlu, M. Şahin, J. Alloy Compd. 694, 1019–1025 (2017)

    Google Scholar 

  43. Y. Sahın, H. Kacus, S. Aydogan, M. Yılmaz, U. Incekara, J. Electr. Mater. 49, 8 (2020)

    Google Scholar 

  44. H. Budak, S. Duman, F.S. Kaya, A. Ashkhası, B. Gurbulak, J. Electr. Mater. 15, 20 (2020). https://doi.org/10.1007/s11664-020-08322-4

    Article  CAS  Google Scholar 

  45. M.H. Al-Dharob, A. Kokce, D.A. Aldemir, A.F. Ozdemir, S. Altındal, J. Phys. Chem. Solids 144, 109523 (2020)

    CAS  Google Scholar 

  46. D. Korucu, A. Turut, R. Turan, S. Altindal, Mater. Sci. Semicond. Process. 16, 344–351 (2013)

    CAS  Google Scholar 

  47. S. Kar, R.L. Narasimhan, J. Appl. Phys. 61, 5353–5359 (1987)

    CAS  Google Scholar 

  48. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, RSC Adv. 8, 4634–4648 (2018)

    CAS  Google Scholar 

  49. A. Turut, A. Karabulut, K. Ejderha, N. Bıyıklı, Mater. Sci. Semicond. Process. 39, 400–407 (2015)

    CAS  Google Scholar 

  50. A. Boutelala, F. Bourfa, M. Mahtali, J. Mater. Sci. 31, 11379–11389 (2020)

    CAS  Google Scholar 

  51. M. Cavas, A.A.M. Farag, Z.A. Alahmed, F. Yakuphanoglu, J. Electroceram. 31, 298–308 (2013)

    CAS  Google Scholar 

  52. Ç.G. Türk, S.O. Tan, S. Altındal, B. Inem, Physica B 582, 411979 (2020)

    Google Scholar 

  53. A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, S.B. Krupanidhi, AIP Adv. 5, 097103 (2015)

    Google Scholar 

  54. I. Tascıoglu, S.O. Tan, S. Altındal, J. Mater. Sci. Mater. Electron. 30, 11536–11541 (2019)

    Google Scholar 

  55. M. Schulz, E. Klausmann, J. Appl. Phys. 18, 169 (1979)

    CAS  Google Scholar 

  56. E. Efil, N. Kaymak, E. Seven, A. Tataroğlu, S. BilgeOcak, E. Orhan, Physica B 568, 31–3532 (2019)

    CAS  Google Scholar 

  57. N. Konofaos, I.R. McClean, C.B. Thomas, Phys. Status Solidi 161, 111 (1997)

    CAS  Google Scholar 

  58. I. Strzalkowski, S. Joshi, C.R. Crowell, Appl. Phys. Lett. 28, 350–352 (1976)

    CAS  Google Scholar 

  59. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, Z. Durmus, M. Caglar, A. Turut, Mater. Res. Bull. 124, 110759 (2020)

    CAS  Google Scholar 

  60. M. Coskun, O. Polat, F.M. Coskun, B. ZenginKurt, Z. Durmus, M. Caglar, A. Turut, J. Mater. Sci. 31, 1731–1744 (2020)

    CAS  Google Scholar 

  61. D.E. Yıldız, İ. Dökme, J. Appl. Phys. 110, 014507 (2011)

  62. M.A. Osman, M.A. Hefni, R.M. Mahfouz, M.M. Ahmad, Phys. B 301, 318 (2001)

    CAS  Google Scholar 

  63. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Mater. Sci. 29, 16939–16955 (2018)

    CAS  Google Scholar 

  64. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Mater. Sci. Semicond. Process. 109, 104923 (2020)

    CAS  Google Scholar 

  65. S.B.K. Aydın, D.E. Yıldız, H. Kanbur Çavuş, R. Şahingöz, Bull. Mater. Sci. 37, 1563–1568 (2014)

  66. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloy Compd. 752, 274–288 (2018)

    CAS  Google Scholar 

  67. M. Sharma, S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155–161 (2016)

    CAS  Google Scholar 

  68. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49(2), 85–87 (1986)

    CAS  Google Scholar 

  69. H. Tokuda, J. Yamazaki, M. Kuzuhara, J. Appl. Phys. 108, 110 (2010)

  70. I. Dökme, S. Altındal, T. Tunç, I. Uslu, Microelectron. Reliab. 50, 39–44 (2010)

    Google Scholar 

  71. H.H. Gullu, D.E. Yildiz, J. Mater. Sci.: Mater. Electron. 31, 8705–8717 (2020)

  72. N. Kumar, S. Chand, J. Alloy Compd. 817, 153294 (2020)

    CAS  Google Scholar 

  73. N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process. 42, 378–382 (2016)

    CAS  Google Scholar 

  74. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi (a) 199(3), 507 (2003)

    CAS  Google Scholar 

  75. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, J. Phys. Chem. Solids 65, 1121 (2004)

    CAS  Google Scholar 

  76. S.P. Szu, C.Y. Lin, Mater. Chem. Phys. 82, 295 (2003)

    CAS  Google Scholar 

  77. A.A. Dakhel, J. Phys. Chem. Solids 65, 1765 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 114F074 and by Gazi University Scientific Research Fund under Project No. 05/2015-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman Er.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, I.K., Çağırtekin, A.O., Artuç, M. et al. Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties. J Mater Sci: Mater Electron 32, 1677–1690 (2021). https://doi.org/10.1007/s10854-020-04937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04937-9

Navigation