Skip to main content
Log in

Mesoporous Mo4V6O25 as high electrochemical performance anode material for lithium ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The strategy of achieving long cycle stability predominantly depends on the electrode materials in lithium ion batteries (LIBs). Herein, this strategy was achieved by the preparation of Mo4V6O25 nanorods using a simple low-temperature hydrothermal method. The prepared sample exhibited mesoporous nature, uniformly arranged nanorods and good thermal stability confirmed by BET, TEM and TG-DT analysis, respectively. This material was used as anode and exhibited initial discharge capacity of 1129 mAh g−1 at 100 mA g−1 for LIBs and delivered reasonable discharge capacities even at different current rates with excellent cycling stability. The Mo4V6O25 is considered as a promising anode material for LIBs with high electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.J. Xue, S. Xin, Y. Yan, K.C. Jiang, Y.X. Yin, Y.G. Guo, L. Wan, J. Wan, J. Am. Chem. Soc. 134(25), 12–2515 (2012)

    Google Scholar 

  2. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496–499 (2000)

    Article  CAS  Google Scholar 

  3. M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  Google Scholar 

  4. Y. Huang, X.L. Huang, J.S. Lian, D. Xu, L.M. Wang, X.B. Zhang, J. Mater. Chem. 22, 2844–2847 (2012)

    Article  CAS  Google Scholar 

  5. X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang, J.J. Xu, Z. Wu, Q.C. Liu, Y. Zhang, X.B. Zhang, Adv Funct. Mater. 23, 4345–4353 (2013)

    Article  CAS  Google Scholar 

  6. H.G. Wang, D.L. Ma, X.L. Huang, Y. Huang, X.B. Zhang, Sci Rep. 2, 1–8 (2012)

    Google Scholar 

  7. P.P. Su, S.C. Liao, F. Rong, F.Q. Wang, J. Chen, C. Li, Q.H. Yang, J. Mater. Chem. A. 2, 17408–17414 (2014)

    Article  CAS  Google Scholar 

  8. M.F. Hassan, Z.P. Guo, Z. Chen, H.K. Liu, J. Power Sources 195, 2372–2376 (2010)

    Article  CAS  Google Scholar 

  9. X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, Adv. Mater. 21, 2710–2714 (2009)

    Article  CAS  Google Scholar 

  10. R. Zhang, Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, D. Zhao, Adv. Mater. 26, 749–6755 (2014)

    CAS  Google Scholar 

  11. F. Zhou, S. Xin, H.W. Liang, L.T. Song, S.H. Yu, Angew. Chem. Int. Ed. 53, 11552–11556 (2014)

    Article  CAS  Google Scholar 

  12. B. Liu, X. Zhao, Y. Xiao, M. Cao, J Mater Chem A. 2, 3338–3343 (2014)

    Article  CAS  Google Scholar 

  13. X.L. Wang, W.Q. Han, H. Chen, J. Bai, T.A. Tyson, X.Q. Yu, X.J. Wang, X.Q. Yang, J. Am. Chem. Soc. 133, 20692–20695 (2011)

    Article  CAS  Google Scholar 

  14. T. Jayalakshmi, K. Nagaraju, G. Nagaraju, J Ener Chem. 27, 183–189 (2018)

    Article  Google Scholar 

  15. M. Uchiyama, S. Slane, E. Plichta, M. Salomon, J. Electrochem. Soc. 136, 36 (1989)

    Article  CAS  Google Scholar 

  16. M.S. Michael, A. Fauzi, S.R.S. Prabaharan, J Inorg Mat. 2, 261–267 (2000)

    Article  CAS  Google Scholar 

  17. B.L. Cushing, S.H. Kang, J.B. Goodenough, Instability of brannerite cathode materials upon lithium insertion. Inter J inor Mat. 3, 875–879 (2001)

    Article  CAS  Google Scholar 

  18. J. Gopalakrishnan, N.S. Bhuvanesh, R. Vijayaraghavan, N.Y.A. Vasanthacharya, J. Mater. Chem. 7, 307–310 (1997)

    Article  CAS  Google Scholar 

  19. Sakaebe H, Shikano M, Xia Y, Sakai T, Eriksson T, Gustafsson T, Thomas J, Como Italy. 225 (2000)

  20. N. Amdouni, H. Zarrouk, F. Soulette, C.M. Julien, J. Mater. Chem. 13, 2374–2380 (2003)

    Article  CAS  Google Scholar 

  21. R.S. Liu, C.Y. Wang, V.A. Drozd, S.F. Hu, H.S. Sheu, Electrochem. Solid State Lett. 8, A650 (2005)

    Article  CAS  Google Scholar 

  22. Y. Liang, S. Yang, Z. Yi, M. Li, J. Sun, Y. Zhou, J. Mater. Sci. 40, 5553–5555 (2005)

    Article  CAS  Google Scholar 

  23. M. Hu, J. Liang, X. Chen, J. Wei, Z. Zhou, RSC Adv. 00, 1–3 (2012)

    Google Scholar 

  24. L. Zhou, Y. Liang, L. Hu, X. Han, Z. Yi, Sun J Yang S. J Alloy Comp. 7, 389–393 (2008)

    Article  Google Scholar 

  25. G. Qu, J. Wang, G. Liu, B. Tian, C. Su, Z. Che, J. Rueff, Z. Wang, Adv. Funct. Mater. 29, 1805227 (2018)

    Article  Google Scholar 

  26. Y. Liang, S. Yang, Z. Yi, M. Li, J. Sun, Y. Zhou, J. Mater. Sci. 40, 553–5555 (2005)

    Google Scholar 

  27. R.S. Liu, C.Y. Wang, V.A. Drozd, S.F. Hu, H.A.S. Sheuc, Electrochem. Solid-State Lett. 8, A650–A653 (2005)

    Article  CAS  Google Scholar 

  28. A. Satsuma, A. Hattori, K. Mizutani, A. Furuta, A. Miyamoto, T. Hattori, Y. Murakami, J. Phys. Chem. 93, 1484–1490 (1989)

    Article  CAS  Google Scholar 

  29. K. Taramn, S. Teranishi, S. Yoshida, N. Tamura, Prod. Int. Cong. Catal. 3, 282 (1965)

    Google Scholar 

  30. K. Tarama, S. Yoshida, S. Ishida, H. Kakioka, Bull. Chem. Soc. Jpn. 4, 2840–2845 (1968)

    Article  Google Scholar 

  31. Y. Yao, N. Xu, D. Guan, J. Li, Z. Zhuang, L. Zhou, C. Shi, X. Liu, L. Mai, ACS Appl. Mater. Inter. 45, 39425–39431 (2017)

    Article  Google Scholar 

  32. O.M. Hussain, K. Srinivasa Rao, K.V. Madhuri, C.V. Ram Ana, B.S. Naidu, S. Pai, J. John, R. Pinto, Appl. Phys. A 75, 417–422 (2002)

    Article  CAS  Google Scholar 

  33. P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Nano Lett. 4, 784–1788 (2012)

    Google Scholar 

  34. Y. Du, G. Li, E.W. Peterson, J. Zhou, X. Zhang, R. Mu, Z. Dohnálek, M. Bowden, I. Lyubinetsky, S.A. Chambers, Nanoscale. 8, 3119–3124 (2016)

    Article  CAS  Google Scholar 

  35. D. Porwal, A.C.M. Esther, I.N. Reddy, N. Sridhara, N.P. Yadav, D. Rangappa, P. Bera, C. Anandan, A.K. Sharma, A. Dey, RSC Adv. 5, 35737–35745 (2015)

    Article  CAS  Google Scholar 

  36. H.K. Matralis, C. Papadopoulou, C. Kordulis, A. Aguilar Elguezabal, V. Cortes Corberan, Appl. Catal. A 126, 365–380 (1995)

    Article  CAS  Google Scholar 

  37. N. Chena, C. Wanga, F. Hu, F. Bie, Y. Wei, G. Chen, F. Du, ACS Appl. Mater. Interfaces. 29, 16117–16123 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DST-SERB, Govt. of India, New Delhi (SB/FT/CS-083/2012), and thanks to Prf. N. Munichandraiah, Dept. of Inorganic and physical chemistry, IISC, Bangalore for providing the glove box facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayalakshmi, T., Kishore, B. & Nagaraju, G. Mesoporous Mo4V6O25 as high electrochemical performance anode material for lithium ion battery. J Mater Sci: Mater Electron 32, 1593–1601 (2021). https://doi.org/10.1007/s10854-020-04928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04928-w

Navigation