Skip to main content
Log in

Improvement in photovoltaic response of bismuth ferrite by tuning its ferroelectric and bandgap properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pristine and Mn-doped bismuth ferrite samples were prepared by sol–gel method. XRD patterns showed rhombohedral to orthorhombic phase transition with Mn doping in BiFeO3 sample. The surface morphology of the samples was carried out by scanning electron microscope which exhibited a decrease in grain size with Mn doping. Magnetic hysteresis curves exhibit that manganese doping induces modification in magnetic properties of bismuth ferrites. Significant modification was observed in dielectric with Mn doping and maximum value was recorded for BiFe0.8Mn0.20O3 sample. PE hysteresis curves were recorded to evaluate the ferroelectric properties of all samples at room temperature. A significant improvement was observed in ferroelectric properties in doped samples. Bandgap values of BiFe1−xMnxO3 in UV–Vis region decreases with Mn doping and minimum for BiFe0.80Mn0.20O3 sample as evaluated from Tauc’s plots. I–V studies of pristine and Mn-doped samples were carried out with light and without light. Enhanced photocurrent density was observed in Mn-doped BFO samples. Hence, these modifications in ferroelectric and photovoltaic properties of BiFe1−xMnxO3 samples make bismuth ferrites a good candidate for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. A. Manzoor, A.M. Afzal, N. Amin, M.I. Arshad, M. Usman, M.N. Rasool, M.F. Khan, Ceram. Int. 42, 11447–11452 (2016)

    Article  CAS  Google Scholar 

  2. Z. Peng, J. Ma, J. Wang, Q. Zhao, Y. Wang, Physica Status Solidi 210, 819 (2013)

    Article  Google Scholar 

  3. G. Chena, J. Chena, W. Peia, Y. Lua, Q. Zhanga, Q. Zhangb, Y. Hea, Mater. Res. Bull. 110, 39 (2019)

    Article  Google Scholar 

  4. M.M. Seyfouri, D. Wang, Crit. Rev. Solid State Mater. Sci. (2020). https://doi.org/10.1080/10408436.2019.1708700

    Article  Google Scholar 

  5. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509 (2013)

    Article  CAS  Google Scholar 

  6. S. Kumar, P. Kumar, R. Walia, V. Verma, Results Phys. 14, 102403 (2019)

    Article  Google Scholar 

  7. V. Verma, J. Alloys Compd. 641, 205 (2015)

    Article  CAS  Google Scholar 

  8. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, J. Alloys Compd. 504, 420–426 (2010)

    Article  CAS  Google Scholar 

  9. A.D. Sharma, H.B. Sharma, Integrated Ferroelectr. 203, 81–90 (2019)

    Article  CAS  Google Scholar 

  10. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525–529 (2012)

    Article  CAS  Google Scholar 

  11. F. FarlinAthena, T. Saha, M. Islam, M.A. Matin, A. Sharif, Mater. Sci. Eng. 438, 012030 (2018)

    Google Scholar 

  12. A. Bismibanu, M. Alagar, J.S. Mercy Jebaselvi, C. Gayathri, Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 06, 4299 (2018)

    Google Scholar 

  13. M. Halder, A.K. Meikap, J. Appl. Phys. 127, 174104 (2020)

    Article  Google Scholar 

  14. V. Srinivas, A.T. Raghavender, K. Vijaya Kumar, Phys. Res. Int. 4835328, 1–5 (2016)

    Article  Google Scholar 

  15. V. Raghavendra Reddy, A. Gupta, D.M. Phase, N. Lakshmi, S.K. Deshpande, A.M. Awasthi, J. Phys. 19, 136202 (2007)

    Google Scholar 

  16. A.T. Raghavender, N.H. Hong, J. Magn. 16, 19–22 (2011)

    Article  Google Scholar 

  17. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, J. Appl. Phys. 112, 094102 (2012)

    Article  Google Scholar 

  18. B. Dhanalakshmi, K. Pratap, B. Parvatheeswara Rao, P.S.V. SubbaRao, J. Alloys. Compd. 676, 193 (2016).

  19. Nisha, D.K. Shukla, S. Kumar, AIP Conf. Proc. 2006, 030037 (2018).

  20. J.-Z. Huang, Y. Shen, M. Li, C.-W. Nan, J. Appl. Phys. 110, 094106 (2011)

    Article  Google Scholar 

  21. G. Arya, A. Kumar, M. Ram, N.S. Negi, Int. J. Adv. Eng. Technol. 5, 245 (2013)

    Google Scholar 

  22. B.K. Vashisth, J.S. Bangruwa, A. Beniwal, S.P. Gairola, A. Kumar, N. Singh, V. Verma, J. Alloys. Compd. 698, 699 (2017)

    Article  CAS  Google Scholar 

  23. C. Elissalde, J. Ravej, Mater. Ceram. Int. 39, 8527 (2013)

    Article  Google Scholar 

  24. S. Godara, B. Kumar, Ceram. Int. 41, 6912 (2015)

    Article  CAS  Google Scholar 

  25. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, J. Alloy. Comp. 594, 175 (2014)

    Article  CAS  Google Scholar 

  26. C.T. Munos, J.P. Rivera, H. Schmid, Ferroelectrics 55, 235 (2011)

    Google Scholar 

  27. M.A. Khan, T.P. Comyn, A.J. Bell, Appl. Phys. Lett. 92, 072908 (2008)

    Article  Google Scholar 

  28. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl Phys Lett. 84, 1731 (2004)

    Article  CAS  Google Scholar 

  29. J.P. Tae, C. Georgia, J.V. Arthur, M.R. Arnold, S.W. Stanislaus, Nano. Lett. 7, 766 (2007)

    Article  Google Scholar 

  30. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  Google Scholar 

  31. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  CAS  Google Scholar 

  32. J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li, Adv. Funct. Mater. 15, 303 (2005)

    Article  CAS  Google Scholar 

  33. S. Ju, T.Y. Cai, Appl Phys Lett 95, 231906 (2009)

    Article  Google Scholar 

  34. S.G.V. Rao, C.N.R. Rao, Appl. Spectrosc. 24, 436 (1970)

    Article  CAS  Google Scholar 

  35. H.-M. Xu, H. Wang, J. Shi, Y. Lin, C. Nan, Nanomaterials 6(11), 215 (2016)

    Article  Google Scholar 

  36. A. Singh, Z.R. Khan, P.M. Vilarinho, V. Gupta, R.S. Katiyar, Mater. Res. Bull. 49, 531 (2014)

    Article  CAS  Google Scholar 

  37. R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, M.G. Shen, J. Phys. Chem. C 114, 21390 (2010)

    Article  CAS  Google Scholar 

  38. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors of this work are grateful to the Principal, Hindu College, University of Delhi and Head, Department of Physics and Astrophysics, University of Delhi. We acknowledge the University Science Instrumental Centre (USIC) and Prof. Vinay Gupta, University of Delhi for the characterization facilities and valuable suggestions regarding the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arti, Gupta, R., Bokolia, R. et al. Improvement in photovoltaic response of bismuth ferrite by tuning its ferroelectric and bandgap properties. J Mater Sci: Mater Electron 32, 1570–1581 (2021). https://doi.org/10.1007/s10854-020-04925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04925-z

Navigation