Skip to main content
Log in

Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles grafted 1D-TiO2 nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One-dimensional (1D) titanium dioxide (TiO2) nanostructures have enormous attention for next-generation renewal energy resources. In reference to that, present work reports the effect of different voltages (40 V and 60 V) on the structural and morphological properties of 1D-TiO2 nanotubes (TONTs) and their hybrids by grafting of bimetallic nanoparticles (BiMNPs) of AgAu. The growth at different voltages affects the morphology and diameters of TONTs as imaged using field emission scanning electron microscopy (FESEM). The variation in anodization voltage from 40 to 60 V increases the diameter of TONTs that offers a larger active surface area of TONTs. It is further revealed that the crystallinity and crystallite size of TONTs is increased after increasing the anodization voltage. Furthermore, TONTs are integrated with AgAu BiMNPs to form the hybrid structures. The AgAu-TONT hybrid forms a modified interface and induces less compressive strains that improve the charge separation at the interface and hence improve the electronic structure, as investigated by X-ray photoelectron spectroscopy (XPS) and X-ray Diffraction (XRD). On further exploring the 1D-TONTs and AgAu-TONTs for photocatalytic studies, it is observed that the photocatalytic activity of AgAu-TONTs is better than TONTs-40 V and TONTs-60 V. The improved photocatalytic activity in the AgAu-TONTs is due to the large surface area, charge carrier generation, and lesser compressive strain present at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 2–32 (2006)

    Article  CAS  Google Scholar 

  2. B. Weng, S. Liu, Z.R. Tang, Y.J. Xu, One-dimensional nanostructure based materials for versatile photocatalytic applications. RSC Adv. 4, 12685–12700 (2014)

    Article  CAS  Google Scholar 

  3. A. Rani, R. Reddy, U. Sharma, P. Mukherjee, P. Mishra, A. Kuila, L.C. Sim, P. Saravanan, A review on the progress of nanostructure materials for energy harnessing and environmentalremediation. J. Nanostruct. Chem. 8, 255–291 (2018)

    Article  CAS  Google Scholar 

  4. S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)

    Article  Google Scholar 

  5. G.J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications-a review. Powder Technol. 318, 8–22 (2017)

    Article  CAS  Google Scholar 

  6. C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 6, 3531–3555 (2018)

    Article  CAS  Google Scholar 

  7. M. Pawar, S.T. Sendoǧdular, P. Gouma, A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system. J. Nanomater. 2018, 13 (2018)

    Article  Google Scholar 

  8. S. Wu, J. Lv, F. Wang, N. Duan, Q. Li, Z. Wang, Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@TiO2 composite under simulated solar lights. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  9. T. Feng, G.S. Feng, L. Yan, J.H. Pan, One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater. Int. J. Photoenergy 2014, 14 (2014)

    Article  Google Scholar 

  10. W.A. Abbas, I.H. Abdullah, B.A. Ali, N. Ahmed, A.M. Mohamed, M.Y. Rezk, N. Ismail, M.A. Mohamed, N.K. Allam, Recent advances in the use of TiO2 nanotube powder in biological, environmental, and energy applications. Nanoscale Adv. 1, 2801–2816 (2019)

    Article  Google Scholar 

  11. J.Y. Huang, K.Q. Zhang, Y.K. Lai, Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int. J. Photoenergy 2013, 19 (2013)

    Article  Google Scholar 

  12. S. Li, G. Zhang, D. Guo, L. Yu, W. Zhang, Anodization fabrication of highly ordered TiO2 nanotubes. J. Phys. Chem. C 113, 12759–12765 (2009)

    Article  CAS  Google Scholar 

  13. Y. Fu, A. Mo, A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. 13, 187 (2018)

    Article  Google Scholar 

  14. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays. Nano-Struct. Nano-Objects 8, 7–14 (2016)

    Article  CAS  Google Scholar 

  15. L. Qin, Q. Chen, R. Lan, R. Jiang, X. Quan, B. Xu, F. Zhang, Y. Jia, Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 31, 1059–1064 (2015)

    Article  CAS  Google Scholar 

  16. K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran, A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J. Bio- Tribo-Corrosion. 1, 28 (2015)

    Article  Google Scholar 

  17. X. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7, 3210–3235 (2017)

    Article  CAS  Google Scholar 

  18. Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of TiO2nanoparticles: a theoretical aspect. J. Mater. Chem. A. 7, 13833–13859 (2019)

    Article  CAS  Google Scholar 

  19. T. Noeiaghaei, J.H. Yun, S.W. Nam, K.D. Zoh, V.G. Gomes, J.O. Kim, S.R. Chae, The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater. Water Sci. Technol. 71, 1301–1309 (2015)

    Article  CAS  Google Scholar 

  20. P. Bamola, C. Dwivedi, A. Gautam, M. Sharma, S. Tripathy, A. Mishra, H. Sharma, Strain-induced bimetallic nanoparticles-tio2nanohybrids for harvesting light energy. Appl. Surf. Sci. 511, 145416 (2016)

    Article  Google Scholar 

  21. M. Nischk, P. Mazierski, Z. Wei, K. Siuzdak, N.A. Kouame, E. Kowalska, H. Remita, A. Zaleska-Medynska, Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci. 387, 89–102 (2016)

    Article  CAS  Google Scholar 

  22. J. Sha, S. Paul, F. Dumeignil, R. Wojcieszak, Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. RSC Adv. 9, 29888–29901 (2019)

    Article  CAS  Google Scholar 

  23. J.R. Daniel, L.A. McCarthy, E. Ringe, D. Boudreau, Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction assisted galvanic replacement approach. RSC Adv. 9, 389 (2019)

    Article  CAS  Google Scholar 

  24. C. Dwivedi, A. Chaudhary, S. Srinivasan, C.K. Nandi, Polymer stabilized bimetallic alloy nanoparticles: synthesis and catalytic application. Colloids Interface Sci. Commun. 24, 62–67 (2018)

    Article  CAS  Google Scholar 

  25. T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, A.H. Sari, M.K. Salem, Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method. J. Theor. Appl. Phys. 11, 243–248 (2017)

    Article  Google Scholar 

  26. D. Regonini, F.J. Clemens, Anodized TiO2 nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett. 142, 97–101 (2015)

    Article  CAS  Google Scholar 

  27. H. Yoo, M. Kim, Y.T. Kim, K. Lee, J. Choi, Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo) electrochemical reactions. Catalysts 8, 1–25 (2018)

    Article  Google Scholar 

  28. K. Gulati, A. Santos, D. Findlay, D. Losic, Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. J. Phys. Chem. C 119, 16033–16045 (2015)

    Article  CAS  Google Scholar 

  29. A. Bishnoi, S. Kumar, N. Joshi, Wide-Angle X-Ray Diffraction (WXRD) (Elsevier Inc., Amsterdam, 2017).

    Book  Google Scholar 

  30. H.M. Moghaddam, S. Nasirian, Dependence of activation energy and lattice strain on TiO2 nanoparticles. Nanosci. Methods 1, 201–212 (2012)

    Article  Google Scholar 

  31. E. Silva Junior, F.A. La Porta, M.S. Liu, J. Andrés, J.A. Varela, E. Longo, A relationship between structural and electronic order-disorder effects and optical properties in crystalline TiO2nanomaterials. Dalt. Trans. 44, 3159–3175 (2015)

    Article  CAS  Google Scholar 

  32. C. Lejon, L. Österlund, Influence of phonon confinement, surface stress, and zirconium doping on the Raman vibrational properties of anatase TiO2 nanoparticles. J. Raman Spectrosc. 42, 2026–2035 (2011)

    Article  CAS  Google Scholar 

  33. S. Kelly, F.H. Pollak, M. Tomkiewicz, Raman Spectroscopy As A Morphological Probe for TiO2 aerogels. J. Phys. Chem. B 5647, 2730 (1997)

    Article  Google Scholar 

  34. P.M. Kibasomba, S. Dhlamini, M. Maaza, C. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson–Hall plot method. Results Phys. 9, 628 (2018)

    Article  Google Scholar 

  35. Y. Zhang, S. Farsinezhad, B. Wiltshire, R. Kisslinger, P. Kar, K. Shankar, Optical anisotropy in vertically oriented TiO2 nanotube arrays. IOP Sci. 28, 37 (2017)

    Google Scholar 

  36. S. Maikap, T.Y. Wang, P.J. Tzeng, C.H. Lin, T.C. Tien, L.S. Lee, J.R. Yang, M.J. Tsai, Band offsets and charge storage characteristics of atomic layer deposited high- k HfO2/TiO2 multilayers. Appl. Phys. Lett. 90, 262901 (2007)

    Article  Google Scholar 

  37. A. Senapati, S. Roy, Y.F. Lin, M. Dutta, S. Maikap, Oxide-electrolyte thickness dependence diode-like threshold switching and high on/off ratio characteristics by using Al2O3 based CBRAM. Electronics 9, 1106 (2020)

    Article  CAS  Google Scholar 

  38. S. Farsinezhad, H. Sharma, K. Shankar, Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 17, 29723 (2015)

    Article  CAS  Google Scholar 

  39. S.K. Misra, S.I. Andronenko, D. Tipikin, J.H. Freed, V. Somani, Om Prakash, Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR. J Magn. Magn. Mater. 401, 495–505 (2016)

    Article  CAS  Google Scholar 

  40. A. Loiseau, V. Asila, G.B. Aullen, M. Lam, M. Salmain, S. Boujday, Silver-Based Plasmonic Nanoparticles for and their use in Biosensing. Biosensors 9, 78 (2019)

    Article  CAS  Google Scholar 

  41. H. Sopha, M. Krbal, S. Ng, J. Prikryl, R. Zazpe, F. Kwong, J.M. Macak, Highly efficient photoelectrochemical and photocatalytic anodic TiO2 nanotube layers with additional TiO2 coating. Appl. Mater. Today 9, 104 (2017)

    Article  Google Scholar 

  42. S. Noothongkaew, J.K. Han, Y.B. Lee, O. Thumthan, K.S. An, Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog. Nat. Sci. 27, 641–646 (2017)

    Article  CAS  Google Scholar 

  43. U.K. Thakur, P. Kumar, S. Gusarov, A.E. Kobryn, S. Riddell, A. Goswami, K.M. Alam, S. Savela, P. Kar, T. Thundat, A. Meldrum, K. Shankar, Consistently high Voc values in p-i-n type perovskite solar cells using Ni3+-doped NiO nanomesh as the hole transporting layer. ACS Appl. Mater. Interfaces 12, 11467–11478 (2020)

    Article  CAS  Google Scholar 

  44. P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt and Pt nanoparticles: Interfacial band alignment and visible light photoelectrochemical activity. Nanotechnology 29, 14002 (2017)

    Article  Google Scholar 

  45. J. Kong, Y. Wang, Q. Sun, D. Meng, Synthesis and photocatalytic properties of Ce-doped TiO2 nanotube arrays via anodic oxidation. J. Electr. Mater. 46, 4791 (2017)

    Article  CAS  Google Scholar 

  46. W. Wang, J. Zhang, D. Liang, Y. Li, Y. Xie, Y. Wang, J. Li, Anodic oxidation growth of lanthanum/manganese-doped TiO2 nanotube arrays for photocatalytic degradation of various organic dyes. J. Mater. Sci. 31, 8844 (2020)

    CAS  Google Scholar 

  47. W. Li, G. Zhang, X. Jiang, Y. Liu, J. Zhu, F. Ding, Z. Liu, X. Guo, C. Song, CO2 Hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): effects of crystal phase of supports and metal−support interaction on tuning product distribution. ACS Catal. 9, 2739–2751 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Science and engineering research board (SERB), (Grant No. ECR/2017/000516)-Department of science and technology (DST), and Government of India for providing funds to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamola, P., Rawat, S., Dwivedi, C. et al. Effect of nanotube diameter on the photocatalytic activity of bimetallic AgAu nanoparticles grafted 1D-TiO2 nanotubes. J Mater Sci: Mater Electron 32, 1427–1444 (2021). https://doi.org/10.1007/s10854-020-04914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04914-2

Navigation