Oxygen vacancies induced variations in structural, optical and dielectric properties of SnO2/graphite nanocomposite

Abstract

Oxygen vacancies (O.Vs) play vital role in tailoring structural, optical and dielectric properties of nanostructures. Here we prepared SnO2/graphite (SG) nanocomposite by growing SnO2 nanoparticles on graphite sheets via hydrothermal method. Enhanced dielectric behavior due to increase in the oxygen vacancies (O.Vs) has been observed in SnO2/graphite (SG) nanocomposite synthesized. To reveal the underlying origin here, we investigated the structural, morphological, optical, electrochemical and dielectric properties. The growth of SnO2 NPs on graphite sheets resulted in small-sized NPs (Average size 10.89 ± 0.24 nm) inducing stresses in the structure causing large defect density (O.Vs). The formation of SG nanocomposite has been validated via SEM, TEM, EDX and FTIR. EDX, XPS and Photoluminescence (PL) spectra of SG nanocomposite manifest the presence of large oxygen vacancies (O.Vs). It is revealed that the bandgap of the host material SnO2 (from ultra violet to the visible window) can be engineered by controlling the assimilation of SnO2 NPs on GNs. SG nanocomposite exhibits reversible redox process with high anodic and cathodic currents, low internal (0.47 Ω) and charge transfer (4.08 Ω) resistances, correspondingly, low voltage drop (IR) 0.56 V and high capacitance 54.8 F/g. Variations in dielectric constant (ɛ), dielectric loss (\(\varepsilon^{\prime\prime}\)) and conductivity (σac) are attributed to the increased concentration of O.Vs and introduction of conductive carbon (graphite). The variations in dielectric properties are attributable to Maxewell–Wagner interfacial polarization and hopping process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    C. Zhao, X. Wang, J. Kong, J.M. Ang, P.S. Lee, Z. Liu, X. Lu, Self-assembly-induced alternately stacked single-layer MoS and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Interfaces 8(3), 2372–2379 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    C.N.R. Rao, K. Gopalakrishnan, U. Maitra, Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Zhang, Q. Ji, G.F. Han, J. Ju, J. Shi, D. Ma, J. Sun, Y. Zhang, M. Li, X.Y. Lang, Y. Zhang, Z. Liu, Dendritic, transferable, strictly monolayer MoS flakes synthesized on SrTiO single crystals for efficient electrocatalytic applications. ACS Nano 8, 8617–8624 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    C.M. Torres, Y.W. Lan, C. Zeng, J.H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J.R. Adleman, M.B. Lerner, Y.L. Zhong, L.J. Li, C.D. Chen, K.L. Wang, High-current gain two-dimensional MoS2-base hot-electron transistors. NanoLett. 15, 7905–7912 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. NanoLett. 8(10), 3498–3502 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    S. Yang, I.J. Kim, M.J. Jeon, K. Kim, S.I. Moon, H.S. Kim, K.H. An, Preparation of graphite oxide and its electrochemical performance for electric double layer capacitor. J. Ind. Eng. Chem. 14, 365–370 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    S. Das, S. Chaudhui, S. Maji, Ethanol-water mediated solvothermal synthesis of cube and pyramid shaped nanostructured tin oxide. J. Phys. Chem. C. 112(16), 6213–6219 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    J. Ning, Q. Dai, T. Jiang, K. Men, D. Liu, N. Xiao, C. Li, B. Liu, B. Zou, G. Zou, W.W. Yu, Facile synthesis of tin oxide nanoflowers: a potential high-capacity lithium-ion-storage material. Langmuir 25, 1818–1821 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    H. Wang, F. Sun, Y. Zhang, L. Li, H. Chen, Q. Wu, J.C. Yu, Photochemical growth of nanoporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem. 20, 5641–5645 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    A.V. Gaponov, A.B. Glot, Electrical properties of SnO2 based varistor ceramics with CuO addition. J. Mater. Sci. 21(4), 331–337 (2010)

    CAS  Google Scholar 

  12. 12.

    P.G. Li, X. Guo, X.F. Wang, W.H. Tang, Synthesis, photoluminescence and dielectric properties of O-deficient SnO2 nanowires. J. Alloys Compd. 479, 74–77 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    S. Khan, A. Zulfqar, T. Khan, R. Khan, M. Khan, S.A. Khattak, G. Khan, Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite. J. Mater. Sci. 30, 10202 (2019)

    CAS  Google Scholar 

  14. 14.

    X. Li, X. Wanga, L. Wenga, Y. Yu, X. Zhanga, L. Liua, C. Wang, Dielectrical properties of graphite nanosheets/PVDF composites regulated by coupling agent. Mater. Today Commun. 21, 100705 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    Zulfiqar, R. Khan, Y. Yuan, Z. Iqbal, J. Yang, Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J. Mater. Sci. 28(6), 4625–4636 (2016)

    Google Scholar 

  16. 16.

    T.C.D. Santos, C.M. Ronconi, Self-assembled 3D mesoporousgraphene oxides (MEGOs) as adsorbents and recyclable solids for CO2 and CH4 capture. J. CO2 Util. 20, 292–300 (2017)

    Article  Google Scholar 

  17. 17.

    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    R.N. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic. Sens. Actuators. B 169, 199–207 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    M. Yi, Z. Shen, X. Zhang, S. Ma, Achieving concentrated graphene dispersions in water / acetone mixtures by the strategy of tailoring Hansen solubility parameters. J. Phys. D 46, 025301 (2013)

    Article  Google Scholar 

  20. 20.

    E. Fazio, F. Neri, S. Savasta, S. Spadaro, S. Trusso, Surface-enhanced Raman scattering of SnO2 bulk material and colloidal solutions. Phys. Rev. B 85, 195423 (2012)

    Article  Google Scholar 

  21. 21.

    M. SumairaMehraj, Shahnawaze Ansari, Alimuddin, Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Physica E 65, 84–92 (2015)

    Article  Google Scholar 

  22. 22.

    W. Zhou, R. Liu, Q. Wan, Q. Zhang, A.L. Pan, L. Guo, B. Zou, Bound exciton and optical properties of SnO2 one-dimensional nanostructures. J. Phys. Chem. C 113, 1719–1726 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    A. Ahmed, M.N. Siddique, T. Ali, P. Tripathi, Influence of reduced graphene oxide on structural, optical, thermal and dielectric properties of SnO2 nanoparticles. Adv. Powder Technol. 29, 3415 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    V. Kumar, K. Singh, A. Kumar, M. Kumar, K. Singh, A. Vij, A. Thakur, Effect of solvent on crystallographic, morphological and optical properties of SnO2 nanoparticles. Mater. Res. Bull 85, 2020 (2016)

    Google Scholar 

  25. 25.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    V. Paramarta, A. Taufik, R. Saleh, Better adsorption capacity of SnO2 nanoparticles with different graphene addition. J. Phys. 774, 012039 (2016)

    Google Scholar 

  27. 27.

    M. Bera, P. Gupta, P.K. Maji, Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J. Nanosci. Nanotechnol. 18(2), 902–912 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    B. Kartick, S.K. Srivastava, I. Srivastava, Green synthesis of graphene. J. Nanosci. Nanotechnol. 13(6), 4320–4324 (2013)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Wang, J.Y. Lee, Preparation of SnO2 – graphite nanocomposite anodes by urea-mediated hydrolysis. Electrochem. Commun. 5, 292–296 (2003)

    CAS  Article  Google Scholar 

  30. 30.

    M. Bhatnagar, V. Kaushik, A. Kaushal, M. Singh, B.R. Mehta, Structural and photoluminescence properties of tin oxide and tin oxide: C core – shell and alloy nanoparticles synthesised using gas phase technique. AIP Adv. 6(9), 095321 (2016)

    Article  Google Scholar 

  31. 31.

    H. Huang, S. Tian, J. Xu, Z. Xie, D. Zeng, D. Chen, G. Shen, Needle-like Zn-doped SnO2nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology 23(10), 105502 (2012)

    Article  Google Scholar 

  32. 32.

    A. S. Lanje, S. J. Sharma, R. B. Pode, Scholars Research Library (2010).

  33. 33.

    A. Ahmed, P.M. Tripathi, M.N. Siddique, T. Ali, Microstructural, optical and dielectric properties of Al-incorporated SnO2 nanoparticles. IOP Conf. Series 225, 012173 (2017)

    Article  Google Scholar 

  34. 34.

    S.P. Lim, N.M. Huang, H.N. Lim, Solvothermal synthesis of SnO2/graphenenanocomposites for supercapacitor application. Ceram. Int. 39(6), 6647–6655 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    A. Sumboja, U.M. Tefashe, G. Wittstock, P.S. Lee, Investigation of charge transfer kinetics of polyanilinesupercapacitor electrodes by scanning electrochemical microscopy. Adv. Mater. Interfaces 2(1), 1400154 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors Sardar Ali Khan and Zulfiqar have equal contributions in this paper. This work is financially supported by the Higher Education Research Endowment Fund (NO. PMU1-22/HEREF/2014-15/Vol-111/) Khyber Pakhtunkhwa (KPK) Pakistan.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nasir Rahman or Hua Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, Khan, S.A., Rahman, N. et al. Oxygen vacancies induced variations in structural, optical and dielectric properties of SnO2/graphite nanocomposite. J Mater Sci: Mater Electron 32, 1402–1412 (2021). https://doi.org/10.1007/s10854-020-04912-4

Download citation