Skip to main content
Log in

Improving the thermomechanical and magnetic properties of CuMnAl Heusler alloy by TiB doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of simultaneous doping of Ti and B on the thermomechanical, structural, and magnetic properties of CuAlMn Heusler alloys was evaluated in this study. The samples were prepared via induction casting, and they were characterized by X-ray diffraction, differential thermal analysis, optical microscopy, scanning electron microscopy, mechanical microhardness tests, and magnetometry. The alloys presented the austenite phase with L21 + DO3 structures. It was found that the doping of TiB reduced the average grain size and increased the amount of second-phase precipitates, which was attributed to the low Ti solubility in the austenitic matrix. A reduction in the values of Curie temperature, melting temperature, melting enthalpy, and HV microhardness was observed with the doping of TiB to the CuAlMn ternary system. It was also verified that the simultaneous doping of Ti and B changed the magnetic behavior of the CuAlMn system from paramagnetic (with weak ferromagnetic contribution) to ferromagnetic order. Our results bring to light a new alternative to doping CuAlMn alloy, and improve the structural and magnetic properties, interesting parameters for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.E. Hodgson, M.H. Wu, R.J. Biermann, Shape Memory Alloys, Metals Handbook, 897 (ASM International, Ohio, 1990), pp. 902–902

    Google Scholar 

  2. J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys. Int. Mater. Rev. 257, 315–55 (2010)

    Google Scholar 

  3. M. Nematollahi, K.S. Baghbaderani, A. Amerinatanzi, H. Zamanian, M. Elahinia, Application of NiTi in assistive and rehabilitation devices: a review. Bioeng 6, 37 (2019)

    Google Scholar 

  4. X.G. Zhao, M. Tong, C.W. Shih, B. Li, W.C. Chang, W. Liu, Z.D. Zhang, Microstructure, martensitic transitions, magnetocaloric, and exchange bias properties in Fe-doped Ni-Mn-Sn melt-spun ribbons. Jpn. J. Appl. Phys. 113(17), 17A913 (2013)

    Article  Google Scholar 

  5. L. Zhou, A. Giri, K. Cho, Y. Sohn, Mechanical anomaly observed in Ni-Mn-Ga alloys by nanoindentation. Acta. Mater. 54, 63–118 (2016)

    Article  Google Scholar 

  6. R. Kainuma, W. Ito, R.Y. Umetsu, K. Oikawa, K. Ishida, Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl. Phys. Lett. 93, 091906 (2008)

    Article  Google Scholar 

  7. L.N. Khanov, A.B. Batdalov, A.V. Mashirov, A.P. Kamantsev, A.M. Aliev, Magnetocaloric effect and magnetostriction in a Ni49.3Mn40.4In10.3 Heusler alloy in AC magnetic fields. Phys. Solid State 1111(6), 1114–1160 (2018)

    Google Scholar 

  8. P. Devi, C.S. Mejía, M.G. Zavareh, K.K. Dubey, P. Kushwaha, Y. Skourski, C. Felser, M. Nicklas, S. Singh, Improved magnetostructural and magnetocaloric reversibility in magnetic Ni-Mn-In shape-memory Heusler alloy by optimizing the geometric compatibility condition. Phys. Rev. Mater. 3, 062401 (2019)

    Article  CAS  Google Scholar 

  9. T. Sakon, Y. Yamasaki, H. Kodama, T. Kanomata, H. Nojiri, Y. Adachi, The characteristic properties of magnetostriction and magneto-volume effects of Ni2MnGa-type ferromagnetic Heusler alloys. Materials (Basel) 12(22), 3655 (2019)

    Article  CAS  Google Scholar 

  10. B.D. White, R.I. Barabash, O.M. Barabash, I. Jeon, M.B. Maple, Magnetocaloric effect near room temperature in quintenary and sextenary Heusler alloys. J. Appl. Phys. 126, 165101 (2019)

    Article  Google Scholar 

  11. M. Ovichi, H. Elbidweihy, E.D. Torre, L.H. Bennett, M. Ghahremani, F. Johnson, M. Zou, Magnetocaloric effect in NiMnInSi Heusler alloys. J. Appl. Phys. 117, 17D107 (2015)

    Article  Google Scholar 

  12. R. Żuberek, O.M. Chumak, A. Nabiałek, M. Chojnacki, I. Radelytskyi, H. Szymczak, Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films. J. Alloy. Compd. 1, 5–748 (2018)

    Google Scholar 

  13. L. Dubiel, A. Żywczak, W. Maziarz, I. Stefaniuk, I.A. Wa, Magnetic phase transition and exchange bias in Ni45Co5Mn35.5In14.5 Heusler alloy. Appl. Magn. Reson. 809, 818–850 (2019)

    Google Scholar 

  14. M.M. Li, J.L. Shen, X. Wang, L. Ma, G.K. Li, C.M. Zhen, D.L. Hou, M. Wang, Enhanced antiferromagnetic interaction-induced spontaneous exchange bias in Mn50Ni40Sn10-xTix Heusler alloys. Intermetallics 13, 17–96 (2018)

    Google Scholar 

  15. R.F. Alves, M.A. Correa, R.A. Torquato, T.A. Passos, F. Bohn, R.B. Silva, R.M. Gomes, D.F. Oliveira, Observation of quasi-diamagnetism and a transition from negative to positive in the exchange bias of a NiMnIn Heusler alloy. J. Magn. Magn. Mater. 493, 165691 (2020)

    Article  Google Scholar 

  16. C.B. Cunha, J.C. Krause, Estudo das Propriedades Estruturais e Magnéticas em Ligas Half-Heusler CoMnSb e CuMnSb. Revista CIATEC – UPF.2013;5

  17. P. Kumar, A.K. Jain, S. Hussain, A. Pandey, R. Dasgupta, Changes in the properties of Cu-Al-Mn shape memory alloy due to quaternary addition of different elements. Revista Matéria, 2015;20

  18. M. Sasmaz, A. Bayri, Y. Aydogdu, The magnetic behavior and physical characterization of Cu–Mn–Al ferromagnetic shape memory alloy. J. Supercond. Nov. Magn. 2011;24

  19. J.L. Liu, Z.H. Chen, H.Y. Huang, J.X. Xie, Microstructure and superelasticity control by rolling and heat treatment in columnar-grained Cu-Al-Mn shape memory alloy. Mat. Sci. Eng. A. Struct. 696, 315–322 (2017)

    Article  CAS  Google Scholar 

  20. Y. Sutou, R. Kainuma, K. Ishida, Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater. Sci. Eng. A Struct. 375, 379–273 (1999)

    Google Scholar 

  21. Y. Sutou, T. Omori, J.J. Wang, R. Kainuma, K. Ishid, Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater. Sci. Eng. A Struct. 278, 282–378 (2004)

    Google Scholar 

  22. Z. Xiao, M. Fang, Z. Li, T. Xiao, Q. Lei, Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy. Mater. Design 451, 456–458 (2014)

    Google Scholar 

  23. G.V.M. Candido, T.A.A. Melo, V.H.C. Albuquerque, R.M. Gomes, S.J.G. Lima, J.M. R.S, Tavares, Characterization of a CuAlBe alloy with different Cr contents. J. Mater. Eng. Perform. 21, 2398–2406 (2012)

    Article  CAS  Google Scholar 

  24. C. Aksu, Z. Canbay, K. Genc, M. Sekerci, Thermal and structural characterization of Cu–Al–Mn–X (Ti, Ni) shape memory alloys. Appl. Phys. A. 115, 371–377 (2014)

    Google Scholar 

  25. Y. Aydogdu, A.S. Turabi, A. Aydogdu, E.D. Vance, M. Kok, G. Kirat, H.E. Karaca, The effects of substituting B for Cu on the magnetic and shape memory properties of CuAlMnB alloys. Appl. Phys. A. 2016;122–687

  26. S.Y. Yang, T.F. Liu, As-quenched microstructures of Cu3 – xMnxAl alloys. Mater. Chem. Phys. 389, 394–398 (2006)

    Google Scholar 

  27. T. Graf, F. Casper, J. Winterlik, B. Balke, G.H. Fecher, Crystal Structure of New Heusler Compounds. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2009

  28. C.B. Pilz, E.L. Matsumura, A. Paganotti, D.R. Cornejo, R.A.G. Silva, Microstructure and phase stability of CuAlMnAgZr multicomponent alloys. Mater. Chem. Phys. 241, 122343 (2020)

    Article  CAS  Google Scholar 

  29. X. Chen, F. Zhang, M. Chi, S. Yang, C. Wang, X. Liu, S. Zheng, Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu–Al–Mn–Ti shape memory alloys. Mater. Sci. Eng. B Solid 10, 17–236 (2018)

    CAS  Google Scholar 

  30. K. Gall, K. Juntunen, H.J. Maier, H. Sehitoglu, Y.I. Chumlyakov, Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater. 49, 3205–3217 (2001)

    Article  CAS  Google Scholar 

  31. M.J. Mahtabi, A. Yadollahi, M. Rahmati et al., Correlation between hardness and loading transformation stress of superelastic NiTi. Arab. J. Sci. Eng. 43, 5029–5033 (2018)

    Article  CAS  Google Scholar 

  32. G.F. Brazolin, C.A. Canbay, S. Ozgen, A.B. Oliveira, A.B.,R.A.G. Silva, Effects of Gd addition on the thermal and microstructural behaviors of the as-cast Cu–9%Al and Cu–9%Al–10%Mn alloys. Appl. Phys. A. 2016;122–928

  33. J.S. Souza, D.A. Modesto, R.A.G. Silva, Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. J Therm Anal Calorim. 2019

Download references

Acknowledgements

The authors would like to thank CNPq (National Council for Scientific and Technological Development), project No 434405/2018-3, for the financial support for this work. MAC and FB would like to thank CNPq through projects Nos 407385/2018-5 and 307720/2017-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danniel Ferreira de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, F.K., de Oliveira, D.F., Correa, M.A. et al. Improving the thermomechanical and magnetic properties of CuMnAl Heusler alloy by TiB doping. J Mater Sci: Mater Electron 32, 1369–1378 (2021). https://doi.org/10.1007/s10854-020-04906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04906-2

Navigation