Dehydrogenation-induced crystal defects for significant enhancement of critical current density in polycrystalline H-doped MgB2

Abstract

The present study discovers the significant enhancement of critical current density by the pinning of borohydride and crystal defects in the hydrogen-treated MgB2 bulks. Based on the concept of gas doping, the nanosized borohydride Mg(BH4)2 is formed by synthesizing H-doped MgB2 bulks in an H2 atmosphere at 300 °C and 350 °C, and the critical current density was enhanced over the entire field. The H-doped MgB2 bulks are then experienced dehydrogenation at 300 °C and 350 °C, respectively, and the decomposition of Mg(BH4)2 induced nanosized pits on the surface of the MgB2 grains, leading to a further enhancement of critical current density, 1.5 × 104 A cm−2 at 20 K and 2.5 T, which is three times larger than that of the un-doped MgB2 sample, 4.8 × 103 A cm−2. The hydrogenation and dehydrogenation hardly changed the superconducting transition temperature or the pinning mechanism of the MgB2 samples. The enhancement of the critical current density is possibly attributed to the pinning effects of the crystal defects, and the reduction of MgO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001). https://doi.org/10.1038/35065039

    CAS  Article  Google Scholar 

  2. 2.

    D. Patel, A. Matsumoto, H. Kumakura, M. Maeda, S.H. Kim, M.S.A. Hossain, S. Choi, J.H. Kim, MgB2 for MRI applications: dual sintering induced performance variations in in situ and IMD processed MgB2 conductors. J. Mater. Chem. C 8, 2507–2516 (2020). https://doi.org/10.1039/C9TC06114B

    CAS  Article  Google Scholar 

  3. 3.

    C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 14, R115–R146 (2001). https://doi.org/10.1088/0953-2048/14/11/201

    CAS  Article  Google Scholar 

  4. 4.

    Q. Cai, Z.Q. Ma, Q. Zhao, Y.C. Liu, Observation of flux jump in (MgB2)0.96Ni0.04 superconductor doped with milled Ni powders. J. Supercond. Nov. Magn. 24(6), 2013–2017 (2011). https://doi.org/10.1007/s10948-011-1160-2

    CAS  Article  Google Scholar 

  5. 5.

    G.A.B. Matthew, J. Liu, C.R.M. Grovenor, P.S. Grant, S. Speller, Design and characterisation of ex situ bulk MgB2 superconductors containing a nanoscale dispersion of artificial pinning centres. Supercond. Sci. Technol. 33, 034006 (2020). https://doi.org/10.1088/1361-6668/ab6959

    CAS  Article  Google Scholar 

  6. 6.

    H.R. Liu, Z.W. Xie, L.H. Jin, F. Yang, S.N. Zhang, Q.Y. Wang, X.M. Xiong, J.Q. Feng, C.S. Li, L. Zhou, Improved superconducting properties in graphene-doped MgB2 bulks prepared by high energy ball milling. J. Mater. Sci.: Mater. Electron. 31, 8837–8843 (2020). https://doi.org/10.1007/s10854-020-03418-3

    CAS  Article  Google Scholar 

  7. 7.

    E. Yücel, Superconducting properties of saccharin-added bulk MgB2 superconductors. J. Mater. Sci.: Mater. Electron. 31, 2428–2435 (2020). https://doi.org/10.1007/s10854-019-02779-8

    CAS  Article  Google Scholar 

  8. 8.

    Q. Cai, Z.Q. Ma, Y.C. Liu, L.M. Yu, Enhancement of critical current density in glycine-doped MgB2 bulks. Mater. Chem. Phys. 136, 778–782 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.056

    CAS  Article  Google Scholar 

  9. 9.

    N. Tomoyuki, Y. Takafumi, F. Hiroyuki, Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors. Supercond. Sci. Technol. 28, 095009 (2015). https://doi.org/10.1088/0953-2048/28/9/095009

    CAS  Article  Google Scholar 

  10. 10.

    K. Ozturk, C.E.J. Dancer, B. Savaskan, C. Aksoy, B. Guner, P. Badica, G. Aldica, S. Celik, The investigation on the regional nanoparticle Ag doping into MgTi0.06B2 bulk for improvement the magnetic levitation force and the bulk critical current. J. Alloys Compd. 724, 427–434 (2017). https://doi.org/10.1016/j.jallcom.2017.07.065

    CAS  Article  Google Scholar 

  11. 11.

    S. Barua, M.S.A. Hossain, Z. Ma, D. Patel, M. Mustapic, M. Somer, S. Acar, I. Kokal, A. Morawski, T. Cetner, D. Gajda, S.X. Dou, Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scr. Mater. 104, 37–40 (2015). https://doi.org/10.1016/j.scriptamat.2015.04.003

    CAS  Article  Google Scholar 

  12. 12.

    M. Muralidhar, M. Higuchi, M. Jirsa, P. Diko, I. Kokal, M. Murakami, Improved critical current densities of bulk MgB2 using carbon-coated amorphous boron. IEEE Trans. Appl. Supercond. 27, 6201104 (2017). https://doi.org/10.1109/TASC.2016.2637341

    Article  Google Scholar 

  13. 13.

    A. Bateni, E. Erdem, S. Repp, S. Weber, M. Somer, Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy. Appl. Phys. Lett. 108, 202601 (2016). https://doi.org/10.1063/1.4949338

    CAS  Article  Google Scholar 

  14. 14.

    Q. Zhao, C. Gong, P. Zhang, Y. Liu, Y. Wang, L. Hao, E. Zhu, Z. Zhu, Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors. J. Mater. Sci.: Mater. Electron. 30, 9888–9896 (2019). https://doi.org/10.1007/s10854-019-01326-9

    CAS  Article  Google Scholar 

  15. 15.

    Q. Cai, T.-Y. Zhang, Q. Zhao, Z. Zhang, Y. Liu, Q. Li, Enhancement of critical current density by borohydride pinning in H-doped MgB2 bulks. J. Appl. Phys. 125, 113901 (2019). https://doi.org/10.1063/1.5064498

    CAS  Article  Google Scholar 

  16. 16.

    H. Fujii, K. Ozawa, Superconducting properties of PIT-processed MgB2 tapes using Mg(BH4)2 precursor. Supercond. Sci. Technol. 24, 095009 (2011). https://doi.org/10.1088/0953-2048/24/9/095009

    CAS  Article  Google Scholar 

  17. 17.

    W. Luo, Z. Huang, X. Cai, R. Niu, R. Nie, Q. Feng, F. Wang, Z. Gan, Microstructure and superconducting properties of MgB2 bulks prepared from Mg + B+Mg(BH4)2 composites. Supercond. Sci. Technol. 32, 085006 (2019). https://doi.org/10.1088/1361-6668/ab22fd

    CAS  Article  Google Scholar 

  18. 18.

    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    Article  Google Scholar 

  19. 19.

    H. Blomqvist, E. Rönnebro, D. Noréus, T. Kuji, Competing stabilisation mechanisms in Mg2NiH4. J. Alloys Compd. 330–332, 268–270 (2002). https://doi.org/10.1016/S0925-8388(01)01637-1

    Article  Google Scholar 

  20. 20.

    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    CAS  Article  Google Scholar 

  21. 21.

    D. Yang, H. Sun, H. Lu, Y. Guo, X. Li, X. Hu, Experimental study on the oxidation of MgB2 in air at high temperature. Supercond. Sci. Technol. 16, 576–581 (2003). https://doi.org/10.1088/0953-2048/16/5/306

    CAS  Article  Google Scholar 

  22. 22.

    N. Hanada, K. Chłopek, C. Frommen, W. Lohstroh, M. Fichtner, Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. J. Mater. Chem. 18, 2611–2614 (2008). https://doi.org/10.1039/B801049H

    CAS  Article  Google Scholar 

  23. 23.

    H.-W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M.W. Chen, S. Orimo, Formation of an intermediate compound with a B12H12 cluster: experimental and theoretical studies on magnesium borohydride Mg(BH4)2. Nanotechnology 20, 204013 (2009). https://doi.org/10.1088/0957-4484/20/20/204013

    CAS  Article  Google Scholar 

  24. 24.

    W.H. Hall, G.K. Williamson, The diffraction pattern of cold worked metals: I. The nature of extinction. Proc. Phys. Soc. 64B, 937–946 (1951)

    CAS  Article  Google Scholar 

  25. 25.

    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    CAS  Article  Google Scholar 

  26. 26.

    B.J. Senkowicz, R.J. Mungall, Y. Zhu, J. Jiang, P.M. Voyles, E.E. Hellstrom, D.C. Larbalestier, Nanoscale grains, high irreversibility field and large critical current density as a function of high-energy ball milling time in C-doped magnesium diboride. Supercond. Sci. Technol. 21, 035009 (2008)

    Article  Google Scholar 

  27. 27.

    E. Martínez, P. Mikheenko, M. Martínez-López, A. Millán, A. Bevan, J.S. Abell, Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B 75, 134515 (2007). https://doi.org/10.1103/PhysRevB.75.134515

    CAS  Article  Google Scholar 

  28. 28.

    D. Dew-Hughes, Flux pinning mechanisms in type-II superconductors. Philos. Mag. 30, 293–305 (1974). https://doi.org/10.1080/14786439808206556

    CAS  Article  Google Scholar 

  29. 29.

    D.A. Cardwell, N. Hari Babu, M. Kambara, A.M. Campbell, Magnetic properties and critical currents of bulk MgB2 polycrystalline superconductor. Physica C 372–376, 1262–1265 (2002). https://doi.org/10.1016/S0921-4534(02)00988-7

    Article  Google Scholar 

  30. 30.

    İ.N. Askerzade, A. Gencer, N. Güçlü, On the Ginzburg-Landau analysis of the upper critical field Hc2 in MgB2. Supercond. Sci. Technol. 15, L13–L16 (2002). https://doi.org/10.1088/0953-2048/15/2/102

    CAS  Article  Google Scholar 

  31. 31.

    M. Eisterer, C. Krutzler, H.W. Weber, Influence of the upper critical-field anisotropy on the transport properties of polycrystalline MgB2. J. Appl. Phys. 98, 033906 (2005). https://doi.org/10.1063/1.1997288

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51804195).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qi Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Li, X., Li, S. et al. Dehydrogenation-induced crystal defects for significant enhancement of critical current density in polycrystalline H-doped MgB2. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-04862-x

Download citation