Skip to main content
Log in

Impact of PC71BM layer on the performance of perovskite solar cells prepared at high moisture conditions using a low temperature annealed ZnO thin film as the electron transport layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO is a promising electron transport material with high electron mobility compared to TiO2 and SnO2. However, its high basicity and the presence of hydroxyl groups at the ZnO surface induces thermochemical decomposition of hybrid perovskites though proton transfer reactions. In perovskite solar cells (PSCs), these deprotonation reactions produce chemical products at the interface between ZnO and perovskite, which obstacle charge carrier extraction process and lead to low efficiency of the solar cells. In this work, PC71BM thin films of three different thickness, 19, 11 and 6 nm, were deposited on top of ZnO layers, prepared by sol–gel spin coating and annealed at 150 °C. It is found that low temperature prepared ZnO films contain deep trap states, and the effective optical band gap of ZnO/PC71BM double layers is slightly reduced with the thickness of the fullerene derivative. The presence of an interfacial PC71BM layer on top of ZnO enhances the stability of the upcoming perovskite coatings and promotes the passivation of trap states at the ZnO surface. Interestingly, the best PC71BM-passivated PSC, fabricated under relative humidity (RH) of 60–65%, achieves a maximum power conversion efficiency (PCE) of 13.3%, whereas those PSCs with only ZnO as the electron transport layer show an average PCE of 5.5%. However, the stability under continuous illumination of PC71BM based PSCs is significantly lower than expected, probably due to the PC71BM degradation under high RH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Saliba, J.P. Correa-Baena, C.M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, A. Abate, Chem. Mater. 30, 4193 (2018)

    Article  CAS  Google Scholar 

  2. S. Zheng, G. Wang, T. Liu, L. Lou, S. Xiao, S. Yang, Sci. China Chem. 62, 800 (2019)

    Article  CAS  Google Scholar 

  3. G. Lu, X. Wang, J. Du, M. Zhang, Y. Gao, Y. Liu, J. Ma, Z. Lin, Coatings 10, 46 (2020)

    Article  CAS  Google Scholar 

  4. S.S. Shin, S.J. Lee, S.I. Seok, Adv. Funct. Mater. 29, 1900455 (2019)

    Article  CAS  Google Scholar 

  5. J. Ali, Y. Li, P. Gao, T. Hao, J. Song, Q. Zhang, L. Zhu, J. Wang, W. Feng, H. Hu, F. Liu, Nanoscale 12, 5719 (2020)

    Article  CAS  Google Scholar 

  6. J. Chen, N.-G. Park, ACS Energy Lett. 5, 2742 (2020)

    Article  CAS  Google Scholar 

  7. G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan, G. Fang, J. Mater. Chem. A 5, 1658 (2017)

    Article  CAS  Google Scholar 

  8. X. Guo, B. Zhang, Z. Lin, J. Ma, J. Su, W. Zhu, C. Zhang, J. Zhang, J. Chang, Y. Hao, Org. Electron. 62, 459 (2018)

    Article  CAS  Google Scholar 

  9. K. Choi, H. Choi, J. Min, T. Kim, D. Kim, S.Y. Son, G.-W. Kim, J. Choi, T. Park, Sol. RRL 4, 1900251 (2020)

    Article  Google Scholar 

  10. H. Pan, X. Zhao, X. Gong, H. Li, N.H. Ladi, X.L. Zhang, W. Huang, S. Ahmad, L. Ding, Y. Shen, M. Wang, Y. Fu, Mater. Horizons 7, 2276 (2020)

    Article  CAS  Google Scholar 

  11. V.O. Eze, Y. Seike, T. Mori, Org. Electron. 46, 253 (2017)

    Article  CAS  Google Scholar 

  12. C.-M. Chen, Z.-K. Lin, W.-J. Huang, S.-H. Yang, Nanoscale Res. Lett. 11, 464 (2016)

    Article  CAS  Google Scholar 

  13. K. Liu, S. Chen, J. Wu, H. Zhang, M. Qin, X. Lu, Y. Tu, Q. Meng, X. Zhan, Energy Environ. Sci. 11, 3463 (2018)

    Article  CAS  Google Scholar 

  14. F. Qin, W. Meng, J. Fan, C. Ge, B. Luo, R. Ge, L. Hu, F. Jiang, T. Liu, Y. Jiang, Y. Zhou, A.C.S. Appl, Mater. Interfaces 9, 26045 (2017)

    Article  CAS  Google Scholar 

  15. Q. Dong, C.H.Y. Ho, H. Yu, A. Salehi, F. So, Chem. Mater. 31, 6833 (2019)

    Article  CAS  Google Scholar 

  16. F. Wang, Y. Zhongbiao, H. Sarvari, S. Park, K. Graham, Y. Zhao, and Z. David Chen, in 2017 IEEE 44th Photovolt. Spec. Conf. (IEEE, 2017), pp. 1044–1047.

  17. M. F. Mohamad Noh, N. A. Arzaee, I. N. Nawas Mumthas, N. A. Mohamed, S. N. F. Mohd Nasir, J. Safaei, A. R. bin M. Yusoff, M. K. Nazeeruddin, and M. A. Mat Teridi, (2020) J. Mater. Chem. A 8: 10481

  18. N. Tiwari, A. Nirmal, M.R. Kulkarni, R.A. John, N. Mathews, Inorg. Chem. Front. 7, 1822 (2020)

    Article  CAS  Google Scholar 

  19. Z. Cao, C. Li, X. Deng, S. Wang, Y. Yuan, Y. Chen, Z. Wang, Y. Liu, L. Ding, and F. Hao, J. Mater. Chem. A (2020).

  20. M.A. Haque, A.D. Sheikh, X. Guan, T. Wu, Adv. Energy Mater. 7, 1602803 (2017)

    Article  CAS  Google Scholar 

  21. S.-H. Chan, Y.-H. Chang, M.-C. Wu, Front. Mater. 6, 1 (2019)

    Article  CAS  Google Scholar 

  22. H. Chen, H. Wang, J. Wu, F. Wang, T. Zhang, Y. Wang, D. Liu, S. Li, R.V. Penty, I.H. White, Nano Res. 13, 1997 (2020)

    Article  CAS  Google Scholar 

  23. P. Zhang, J. Wu, Y. Wang, H. Sarvari, D. Liu, Z.D. Chen, S. Li, J. Mater. Chem. A 5, 17368 (2017)

    Article  CAS  Google Scholar 

  24. H. Mun, H. Yang, J. Park, C. Ju, K. Char, APL Mater. 3, 076107 (2015)

    Article  CAS  Google Scholar 

  25. G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Nanoscale 11, 18968 (2019)

    Article  CAS  Google Scholar 

  26. P. Cheng, Y. Li, X. Zhan, Nanotechnology 24, 484008 (2013)

    Article  CAS  Google Scholar 

  27. A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Nanomaterials 10, 857 (2020)

    Article  CAS  Google Scholar 

  28. K. Kodama, T. Uchino, J. Appl. Phys. 111, 093525 (2012)

    Article  CAS  Google Scholar 

  29. A. Ali, G. Rahman, T. Ali, M. Nadeem, S.K. Hasanain, M. Sultan, Phys. E Low-Dimensional Syst. Nanostructures 103, 329 (2018)

    Article  CAS  Google Scholar 

  30. K. Yuan, L. Chen, F. Li, Y. Chen, J. Mater. Chem. C 2, 1018 (2014)

    Article  CAS  Google Scholar 

  31. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)

    Article  CAS  Google Scholar 

  32. A. Mahroug, S. Boudjadar, S. Hamrit, L. Guerbous, J. Mater. Sci. Mater. Electron. 25, 4967 (2014)

    Article  CAS  Google Scholar 

  33. O. Marin, M. Tirado, N. Budini, E. Mosquera, C. Figueroa, D. Comedi, Mater. Sci. Semicond. Process. 56, 59 (2016)

    Article  CAS  Google Scholar 

  34. J. Rodrigues, D. Smazna, N. Ben Sedrine, E. Nogales, R. Adelung, Y. K. Mishra, B. Mendez, M. R. Correia, T. Monteiro (2019) Nanoscale Adv. 1: 1516

  35. N.E. Hsu, W.K. Hung, Y.F. Chen, J. Appl. Phys. 96, 4671 (2004)

    Article  CAS  Google Scholar 

  36. Z.W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, C. Liu, Nanoscale Res. Lett. 8, 105 (2013)

    Article  CAS  Google Scholar 

  37. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  CAS  Google Scholar 

  38. R.K. Biroju, P.K. Giri, J. Appl. Phys. 122, 044302 (2017)

    Article  CAS  Google Scholar 

  39. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    Article  CAS  Google Scholar 

  40. M. Wang, Y. Zhou, Y. Zhang, E. Jung Kim, S. Hong Hahn, S. Gie Seong, Appl. Phys. Lett. 100, 101906 (2012)

    Article  CAS  Google Scholar 

  41. R. Haarindraprasad, U. Hashim, S.C.B. Gopinath, M. Kashif, P. Veeradasan, S.R. Balakrishnan, K.L. Foo, P. Poopalan, PLoS ONE 10, e0132755 (2015)

    Article  CAS  Google Scholar 

  42. K. Sivakumar, V. Senthil kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Bull. Mater. Sci. 35, 327 (2012)

    Article  CAS  Google Scholar 

  43. C. Zhou, A. Ghods, K. L. Yunghans, V. G. Saravade, P. V. Patel, X. Jiang, B. Kucukgok, N. Lu, and I. Ferguson, in edited by F. H. Teherani, D. C. Look, and D. J. Rogers (2017), p. 101051K.

  44. S. Wilken, J. Parisi, H. Borchert, J. Phys. Chem. C 118, 19672 (2014)

    Article  CAS  Google Scholar 

  45. J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Chem. Mater. 27, 4229 (2015)

    Article  CAS  Google Scholar 

  46. R. Singh, S. Sandhu, J.-J. Lee, Sol. Energy 193, 956 (2019)

    Article  CAS  Google Scholar 

  47. B. Chen, M. Yang, S. Priya, K. Zhu, J. Phys. Chem. Lett. 7, 905 (2016)

    Article  CAS  Google Scholar 

  48. K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R.H. Friend, A.K.-Y. Jen, H.J. Snaith, ACS Nano 8, 12701 (2014)

    Article  CAS  Google Scholar 

  49. W. Ke, D. Zhao, C. Xiao, C. Wang, A.J. Cimaroli, C.R. Grice, M. Yang, Z. Li, C.-S. Jiang, M. Al-Jassim, K. Zhu, M.G. Kanatzidis, G. Fang, Y. Yan, J. Mater. Chem. A 4, 14276 (2016)

    Article  CAS  Google Scholar 

  50. P.C. Eklund, A.M. Rao, P. Zhou, Y. Wang, J.M. Holden, Thin Solid Films 257, 185 (1995)

    Article  CAS  Google Scholar 

  51. A. Distler, T. Sauermann, H.-J. Egelhaaf, S. Rodman, D. Waller, K.-S. Cheon, M. Lee, and D. M. Guldi, Adv. Energy Mater. 4, n/a (2014).

Download references

Acknowledgements

The authors thank María Luisa Ramón-García for XRD measurements. CARC, DMTH and PMMR thank CONACyT-Mexico for graduate student scholarship. Financial supports from PRODEP project (DSA/103.5/16/10252) and UNAM PAPIIT (IN102619) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Rodríguez-Castañeda or L. Hechavarría-Difur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 852 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Castañeda, C.A., Moreno-Romero, P.M., Torres-Herrera, D.M. et al. Impact of PC71BM layer on the performance of perovskite solar cells prepared at high moisture conditions using a low temperature annealed ZnO thin film as the electron transport layer. J Mater Sci: Mater Electron 32, 265–276 (2021). https://doi.org/10.1007/s10854-020-04766-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04766-w

Navigation