Skip to main content

Advertisement

Log in

The dielectric performance of Au/CuCo5S8/p-Si heterojunction for various frequencies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuCo5S8 thiospinel nanocrystals were synthesized by a modified colloidal method, and then it was used as an interfacial layer in the Au/CuCo5S8/p-Si heterojunction device to characterize the dielectric performance of the CuCo5S8 thiospinel. X-ray diffractometer (XRD) was performed to investigate structural behaviors of the CuCo5S8, and the results confirmed the crystalline structure of the CuCo5S8. While the detailed structures of the CuCo5S8 thiospinel were investigated by transmission electron microscope (TEM), the surface morphology was obtained by scanning electron microscope (SEM). Furthermore, the composition of the CuCo5S8 structures was studied and confirmed by the energy dispersive X-ray (EDX). The CuCo5S8 thiospinel were deposited between the Au and p-Si to obtain Au/CuCo5S8/p-Si heterojunction. The impedance spectroscopy technique was employed to determine the voltage- and frequency-dependent dielectric properties of the Au/CuCo5S8/p-Si heterojunction. While the frequency was changed from 100 kHz to 1 MHz with 100 kHz interval, the voltage was altered from − 2.5 V to + 2.5 V. The various dielectric parameters such as complex electric permittivity (dielectric constant (ε′) and dielectric loss (ε″)), electric modulus (M′ and M″), and ac electrical conductivity (σ) were extracted from the C–V and G–V measurements and discussed in details. The results highlighted that the Au/CuCo5S8/p-Si heterojunction device has the frequency- and voltage-dependent dielectric characteristics, and can be considered as switching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Sarilmaz, M. Can, F. Ozel, J. Alloys Compd. 699, 479 (2017)

    Article  CAS  Google Scholar 

  2. A. Kocyigit, M. Yıldırım, A. Sarılmaz, F. Ozel, J. Alloys Compd. 780, 186 (2019)

    Article  CAS  Google Scholar 

  3. A. Kagkoura, T. Skaltsas, N. Tagmatarchis, Chem. A 23, 12967 (2017)

    CAS  Google Scholar 

  4. H. Fu, S.-W. Tsang, Nanoscale 4, 2187 (2012)

    Article  CAS  Google Scholar 

  5. C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, K.M. Ryan, Chem. Rev. 117, 5865 (2017)

    Article  CAS  Google Scholar 

  6. R. Besse, F.P. Sabino, J.L.F. Da Silva, Phys. Rev. B 93, 165205 (2016)

    Article  Google Scholar 

  7. D. Aldakov, A. Lefrançois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013)

    Article  CAS  Google Scholar 

  8. A.M. Wiltrout, C.G. Read, E.M. Spencer, R.E. Schaak, Inorg. Chem. 55, 221 (2016)

    Article  CAS  Google Scholar 

  9. D.E. Yıldız, D.H. Apaydın, L. Toppare, A. Cirpan, J. Appl. Polym. Sci. 134, 44817 (2017)

    Article  Google Scholar 

  10. D.E. Yildiz, M. Karakuş, L. Toppare, A. Cirpan, Mater. Sci. Semicond. Process. 28, 84 (2014)

    Article  CAS  Google Scholar 

  11. S. Park, W. Jang, D.H. Wang, Macromol. Res. 26, 472 (2018)

    Article  CAS  Google Scholar 

  12. M. Yilmaz, Z. Caldiran, A.R. Deniz, S. Aydogan, R. Gunturkun, A. Turut, Appl. Phys. A 119, 547 (2015)

    Article  CAS  Google Scholar 

  13. R. Mirzanezhad-Asl, A. Phirouznia, S. Altındal, Y. Badali, Y. Azizian-Kalandaragh, Phys. B 561, 1 (2019)

    Article  CAS  Google Scholar 

  14. D.E. Yıldız, M. Yıldırım, M. Gökçen, J. Vac. Sci. Technol. A 32, 031509 (2014)

    Article  Google Scholar 

  15. M. Yıldırım, M.O. Erdal, A. Kocyigit, Phys. B 572, 153 (2019)

    Article  Google Scholar 

  16. I. Orak, A. Kocyigit, İ. Karteri, S. Uruş, J. Electron. Mater. 47, 11 (2018)

    Article  Google Scholar 

  17. A. Karabulut, İ Orak, A. Türüt, Solid. State. Electron. 144, 39 (2018)

    Article  CAS  Google Scholar 

  18. D.E. Yildiz, H.H. Gullu, A. Sarilmaz, F. Ozel, A. Kocyigit, M. Yildirim, J. Mater. Sci. Mater. Electron. 31, 2 (2020)

    Google Scholar 

  19. A. Sarilmaz, F. Ozel, J. Alloys Compd. 780, 518 (2019)

    Article  CAS  Google Scholar 

  20. Y. Lang, L. Pan, C. Chen, Y. Wang, J. Electron. Mater. 48, 4179 (2019)

    Article  CAS  Google Scholar 

  21. W. Wang, Y. Geng, P. Yan, F. Liu, Y. Xie, Y. Qian, J. Am. Chem. Soc. 121, 4062 (1999)

    Article  CAS  Google Scholar 

  22. S.P. Yeap, J.K. Lim, B.S. Ooi, A.L. Ahmad, J. Nanoparticle Res. 19, 1 (2017)

    Article  CAS  Google Scholar 

  23. A. Tataroǧlu, Ş Altindal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005)

    Article  Google Scholar 

  24. H.H. Gullu, D.E. Yildiz, J. Mater. Sci. Mater. Electron. 31, 8705 (2020)

    Article  CAS  Google Scholar 

  25. I.M. Afandiyeva, I. Dökme, Ş Altindal, M.M. Bülbül, A. Tataroǧlu, Microelectron. Eng. 85, 247 (2008)

    Article  CAS  Google Scholar 

  26. E.E. Tanrikulu, D.E. Yildiz, A. Günen, S. Altindal, Phys. Scr. 90, 095801 (2015)

    Article  Google Scholar 

  27. I. Orak, A. Kocyigit, S. Alindal, Chin. Phys. B 26, 028102 (2017)

    Article  Google Scholar 

  28. S. Alptekin, A. Tataroğlu, Ş Altındal, J. Mater. Sci. Mater. Electron. 30, 6853 (2019)

    Article  CAS  Google Scholar 

  29. H.H. Gullu, D.E. Yildiz, B. Sürücü, M. Terlemezoglu, M. Parlak, Bull. Mater. Sci. 42, 1713 (2019)

    Google Scholar 

  30. A. Tataroǧlu, Microelectron. Eng. 83, 2551 (2006)

    Article  Google Scholar 

  31. I. Yücedaǧ, Ş Altindal, A. Tataroǧlu, Microelectron. Eng. 84, 180 (2007)

    Article  Google Scholar 

  32. C.D. Balbasi, M. Terlemezoglu, H.H. Gullu, D.E. Yildiz, M. Parlak, Appl. Phys. A 126, 614 (2020)

    Article  CAS  Google Scholar 

  33. S. Demirezen, Appl. Phys. A 112, 827 (2013)

    Article  CAS  Google Scholar 

  34. Ö. Sevgili, İ Taşçoığlu, S. Boughdachi, Y. Azizian-Kalandaragh, Ş Altındal, Phys. B 566, 125 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TUBITAK (The Scientific and Technological Research Council of Turkey) supported this study with the Grand Number of 217M212. Authors would like to thank TUBITAK for supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kocyigit.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocyigit, A., Yıldız, D.E., Sarılmaz, A. et al. The dielectric performance of Au/CuCo5S8/p-Si heterojunction for various frequencies. J Mater Sci: Mater Electron 31, 22408–22416 (2020). https://doi.org/10.1007/s10854-020-04742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04742-4

Navigation