Skip to main content
Log in

Non-adiabatic small polaron hopping transport above metal-like to insulator transition in the vacant 3d-orbital Tb2Ti2O7 pyrochlore oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the validity of Mott variable range hopping (VRH) conduction mechanism and small polaron hopping in Tb2Ti2O7 in the temperature range 603–803 K. The temperature-dependent resistivity data are in good agreement with Mott 3d VRH. The other parameters estimated such as hopping range, hopping energy and density of states near Fermi level are in good agreement with those of many semiconductor oxides. The Holstein’s condition for non-adiabatic conduction mechanism is also satisfied. The ac conductivity is governed by Jonscher’s power law as \( {\sigma}_{a.c}^{\prime}\left(\upsilon, T\right)={\sigma}_{d.c}(T)+\alpha (T){\upsilon}^n \) and the exponent n values in the range of 1.02–1.23 suggest that conduction takes place due to the small polaron hopping mechanism. The possible polaron formation and their mechanism are discussed systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Oxide pyrochlores – A review. Prog. Solid State Chem. 15(2), 55–143 (1983)

    CAS  Google Scholar 

  2. G. Wannier, H. Antiferromagnetism, The triangular ising net. Phys. Rev. 79(2), 357–364 (1950)

    Google Scholar 

  3. R.M.F. Houtappel, Order-disorder in hexagonal lattices. Physica 16(5), 425–455 (1950)

    Google Scholar 

  4. S.T. Bramwell, M.J. Harris, Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys. Condens. Matter 10(14), L215–L220 (1998)

    CAS  Google Scholar 

  5. S. Rosenkranz, A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7. J. Appl. Phys. 87(9), 5914–5916 (2000)

    CAS  Google Scholar 

  6. S.T. Bramwell, M.J.P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials. Science 294(5546), 1495 (2001)

    CAS  Google Scholar 

  7. R. Moessner, Magnets with strong geometric frustration. Can. J. Phys. 79(11–12), 1283–1294 (2001)

    CAS  Google Scholar 

  8. Y.M. Jana, O. Sakai, R. Higashinaka, H. Fukazawa, Y. Maeno, P. Dasgupta, D. Ghosh, Spin-glass-like magnetic ground state of the geometrically frustrated pyrochlore niobate Tb2Nb2O7. Phys. Rev. B 68(17), 174413 (2003)

    Google Scholar 

  9. M.J. Harris, S.T. Bramwell, T. Zeiske, D.F. McMorrow, P.J.C. King, Magnetic structures of highly frustrated pyrochlores. J. Magn. Magn. Mater. 177–181, 757–762 (1998)

    Google Scholar 

  10. L.G. Shcherbakova, L.G. Mamsurova, G.E. Sukhanova, Lanthanide titanates. Russ. Chem. Rev. 48(3), 228–242 (1979)

    Google Scholar 

  11. A.W. Sleight, New ternary oxides of mercury with the pyrochlore structure. Inorg. Chem. 7(9), 1704–1708 (1968)

    CAS  Google Scholar 

  12. D. Mandrus, J.R. Thompson, R. Gaal, L. Forro, J.C. Bryan, B.C. Chakoumakos, L.M. Woods, B.C. Sales, R.S. Fishman, V. Keppens, Continuous metal-insulator transition in the pyrochlore Cd2Os2O7. Phys. Rev. B 63(19), 195104 (2001)

    Google Scholar 

  13. M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi, Superconductivity at 1 K in Cd2Re2O7. Phys. Rev. Lett. 87(18), 187001 (2001)

    Google Scholar 

  14. H. Sakai, K. Yoshimura, H. Ohno, H. Kato, S. Kambe, R.E. Walstedt, T.D. Matsuda, Y. Haga, Y. Onuki, Superconductivity in a pyrochlore oxide, Cd2Re2O7. J. Phys. Condens. Matter 13(33), L785–L790 (2001)

    CAS  Google Scholar 

  15. R. Jin, J. He, S. McCall, C.S. Alexander, F. Drymiotis, D. Mandrus, Superconductivity in the correlated pyrochlore Cd2Re2O7. Phys. Rev. B 64(18), 180503 (2001)

    Google Scholar 

  16. M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, G.H. Kwei, Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore Tl2Mn2O7. Science 273(5271), 81 (1996)

    CAS  Google Scholar 

  17. A.P. Ramirez, M.A. Subramanian, Large enhancement of magnetoresistance in Tl2Mn2O7: pyrochlore versus perovskite. Science 277(5325), 546 (1997)

    CAS  Google Scholar 

  18. K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, Y. Hinatsu, Metal–insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Sm, and Eu). J. Phys. Soc. Jpn. 76(4), 043706 (2007)

    Google Scholar 

  19. K. Matsuhira, M. Wakeshima, Y. Hinatsu, S. Takagi, Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. J. Phys. Soc. Jpn. 80(9), 094701 (2011)

    Google Scholar 

  20. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Y. Tokura, Spin chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet. Science 291(5513), 2573 (2001)

    CAS  Google Scholar 

  21. W. Klein, R.K. Kremer, M. Jansen, Hg2Ru2O7, a new pyrochlore showing a metal–insulator transition. J. Mater. Chem. 17(14), 1356–1360 (2007)

    CAS  Google Scholar 

  22. L.D. Landau, Motion of electrons in crystal lattice. Phys. Z. Sowjetunion 3, 644 (1933)

    Google Scholar 

  23. T. Holstein, Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8(3), 343–389 (1959)

    CAS  Google Scholar 

  24. M. Viret, L. Ranno, J.M.D. Coey, Magnetic localization in mixed-valence manganites. Phys. Rev. B 55(13), 8067–8070 (1997)

    CAS  Google Scholar 

  25. S. Chatterjee, P.H. Chou, C.F. Chang, I.P. Hong, H.D. Yang, Lattice effects on the transport properties of Sr3Mn2O7(R = La,Eu, and Pr). Phys. Rev. B 61(9), 6106–6113 (2000)

    CAS  Google Scholar 

  26. H. Fröhlich, Electrons in lattice fields. Adv. Phys. 3(11), 325–361 (1954)

    Google Scholar 

  27. Y. Toyozawa, Self-trapping of an electron by the acoustical mode of lattice vibration. I. Prog. Theor. Phys. 26(1), 29–44 (1961)

    Google Scholar 

  28. D. Emin, Optical properties of large and small polarons and bipolarons. Phys. Rev. B 48(18), 13691–13702 (1993)

    CAS  Google Scholar 

  29. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1(1), 1–17 (1968)

    CAS  Google Scholar 

  30. N.F. Mott, M. Pepper, S. Pollitt, R.H. Wallis, C.J. Adkins, The Anderson transition. Proc. R. Soc. London, Ser. A 1975(345), 169–205 (1641)

    Google Scholar 

  31. A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C Solid State Phys. 8(4), L49–L51 (1975)

    CAS  Google Scholar 

  32. S.I. Khondaker, I.S. Shlimak, J.T. Nicholls, M. Pepper, D.A. Ritchie, Two-dimensional hopping conductivity in a δ-doped GaAs/AlxGa1-xAs hetrostructure. Phys. Rev. B 59(7), 4580–4583 (1999)

    CAS  Google Scholar 

  33. M. Jaime, M.B. Salamon, K. Pettit, M. Rubinstein, R.E. Treece, J.S. Horwitz, D.B. Chrisey, Magnetothermopower in La0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 68(11), 1576–1578 (1996)

    Google Scholar 

  34. M. Jaime, M.B. Salamon, M. Rubinstein, R.E. Treece, J.S. Horwitz, D.B. Chrisey, High-temperature thermopower in La2/3 Ca1/3MnO3 films: Evidence for polaronic transport. Phys. Rev. B 54(17), 11914–11917 (1996)

    CAS  Google Scholar 

  35. A. Griffin, Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. Phys. Rev. B 53(14), 9341–9347 (1996)

    CAS  Google Scholar 

  36. Y.X. Jia, L. Lu, K. Khazeni, D. Yen, C.S. Lee, A. Zettl, Pr-doping of the high-magnetoresistance perovskite Nd23Sr13MnO3. Solid State Commun. 94(11), 917–920 (1995)

    CAS  Google Scholar 

  37. J.M.D. Coey, M. Viret, L. Ranno, K. Ounadjela, Electron localization in mixed-valence manganites. Phys. Rev. Lett. 75(21), 3910–3913 (1995)

    CAS  Google Scholar 

  38. T. Feng, L. Li, Q. Shi, S. Dong, B. Li, K. Li, G. Li, Evidence for the influence of polaron delocalization on the electrical transport in LiNi0.4+xMn0.4−xCo0.2O2. Phys. Chem. Chem. Phys. 22(4), 2054–2060 (2020)

    CAS  Google Scholar 

  39. A. Banerjee, S. Pal, E. Rozenberg, B.K. Chaudhuri, Adiabatic and non-adiabatic small-polaron hopping conduction in La1−xPbxMnO3+δ(0.0 ≤x≤ 0.5)-type oxides above the metal–semiconductor transition. J. Phys. Condens. Matter 13(42), 9489–9504 (2001)

    CAS  Google Scholar 

  40. W. Hizi, H. Rahmouni, M. Gassoumi, K. Khirouni, S. Dhahri, Transport properties of La0.9Sr0.1MnO3 manganite. Eur. Phy. J. Plus 135(6), 456 (2020)

    CAS  Google Scholar 

  41. R. Datta, S.K. Pradhan, S. Majumdar, S.K. De, Dielectric and impedance spectroscopy of Nd2CoIrO6 double perovskite. J. Phys. Condens. Matter 32(49), 495702 (2020)

    CAS  Google Scholar 

  42. H.J.H. Ma, J.F. Scott, Non-ohmic variable-range hopping and resistive switching in SrTiO3 domain walls. Phys. Rev. Lett. 124(14), 146601 (2020)

    CAS  Google Scholar 

  43. K. Aswathi, J.P. Palakkal, P.N. Lekshmi, M.R. Varma, A Griffiths-like phase and variable range hopping of polarons in orthorhombic perovskite Pr2CrMnO6. New J. Chem. 43(44), 17351–17357 (2019)

    CAS  Google Scholar 

  44. B.S. Kumar, C. Venkateswaran, First observed metal-like to insulator transition in the vacant 3d orbital quantum spin liquid Tb2Ti2O7. Preprint Condmat/1904.12478 (2019). https://doi.org/10.1021/acs.jpcc.0c05174

  45. L.H. Brixner, Preparation and properties of the Ln2Ti2O7-type rare earth titanate. Inorg. Chem. 3(7), 1065–1067 (1964)

    CAS  Google Scholar 

  46. S.W. Han, J.S. Gardner, C.H. Booth, Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7. Phys. Rev. B 69(2), 024416 (2004)

    Google Scholar 

  47. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135(5), 054501 (2011)

    Google Scholar 

  48. S. Ravi, M. Kar, Study of magneto-resistivity in La1−xAgxMnO3 compounds. Phys. B Condens. Matter 348(1), 169–176 (2004)

    CAS  Google Scholar 

  49. N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102(1), 013916 (2007)

    Google Scholar 

  50. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4powders: Deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D. Appl. Phys. 40(6), 1593–1602 (2007)

    CAS  Google Scholar 

  51. M. Younas, M. Nadeem, M. Atif, R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 109(9), 093704 (2011)

    Google Scholar 

  52. A. Ghosh, ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42(2), 1388–1393 (1990)

    CAS  Google Scholar 

  53. G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9(2), 165–175 (1959)

    CAS  Google Scholar 

  54. R.N. Bhowmik, K.S. Aneesh Kumar, Role of pH value during material synthesis and grain-grain boundary contribution on the observed semiconductor to metal like conductivity transition in Ni1.5Fe1.5O4 spinel ferrite. Mater. Chem. Phys. 177, 417–428 (2016)

    CAS  Google Scholar 

  55. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)

    CAS  Google Scholar 

Download references

Acknowledgments

BSK thanks DST-Inspire for the award of SRF (IF-140582) and NCNSNT, University of Madras, is acknowledged for FE-SEM and HR-TEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Venkateswaran.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest related to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.S., Kumar, Y.N., Kamalarasan, V. et al. Non-adiabatic small polaron hopping transport above metal-like to insulator transition in the vacant 3d-orbital Tb2Ti2O7 pyrochlore oxide. J Mater Sci: Mater Electron 31, 22312–22322 (2020). https://doi.org/10.1007/s10854-020-04732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04732-6

Navigation