Skip to main content
Log in

Synthesis of Au-loaded AgInS2 nanoparticles with highly enhanced visible light photocatalytic performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AgInS2 and Au-loaded AgInS2 (denoted as Au/AgInS2) were prepared by one-pot method with thioacetamide as sulfur source and mercaptoacetic acid as stabilizer. The structure, morphology, and optical properties of the obtained samples were characterized by XRD, XPS, BET, HRTEM, DLS, PL, and UV–vis-DRS. The photocatalytic activities of AgInS2 and Au/AgInS2 for the degradation of Rhodamine B (RhB) and 4-Nitrophenol (4-NP) under visible light irradiation were investigated, and the optimal proportions of Au introduced on AgInS2 for the degradation of RhB and 4-NP were obtained. The possible degradation mechanisms of 4-NP by AgInS2 and Au/AgInS2 were proposed based on the active species trapping experiment, optical properties characterization, and the flat potential determination. The results showed that Au was successfully introduced on the surface of AgInS2 nanoparticles, and the photocatalytic degradation efficiencies of Au/AgInS2 toward RhB and 4-NP were higher than those of AgInS2. 5%Au/AgInS2 was the optimal proportion for the degradation of RhB, and the degradation efficiency could reach 98% in 30 min, while 7.5%Au/AgInS2 was the best proportion for the degradation of 4-NP, and the degradation efficiency could reach 100% in 30 min. The enhanced visible light photocatalytic performances of Au/AgInS2 could be attributed to the stronger visible light absorption and the lower recombination probability of photogenerated electron–hole pairs. Active species trapping experiment suggested that the main active species was superoxide radical (·O2) for the degradation of RhB by Au/AgInS2, while for the degradation of 4-NP, the main active species were superoxide radical (·O2) and hydroxyl radical (·OH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Mandal, C. Muralidharan, A.B. Mandal, in Advanced research in nanosciences for water technology. ed. by R. Prasad, T. Karchiyappan (Springer Nature, Switzerland, 2019), p. 39

    Google Scholar 

  2. J. Xiao, L. Wang, L. Deng, Z. Jin, Sci. Total Environ. 650, 2004 (2019)

    CAS  Google Scholar 

  3. J. Du, S. Ma, H. Liu, H. Fu, L. Li, Z. Li, Y. Li, J. Zhou, Appl. Catal. B-Environ. 259, 118062 (2019)

    CAS  Google Scholar 

  4. D. Zhu, Q. Zhou, J. Chem. Technol. Biotechnol. 12, 100255 (2019)

    Google Scholar 

  5. V.K. Chaturvedi, A. Kushwaha, S. Maurya, N. Tabassum, H. Chaurasia, M.P. Singh, in Restoration of wetland ecosystem: a trajectory towards a sustainable environment. ed. by A. Upadhyay, R. Singh, D. Singh (Springer Nature, Singapore, 2020), p. 227

    Google Scholar 

  6. Y. Liu, T. Zhu, M. Deng, X. Tang, S. Han, A. Liu, Y. Bai, D. Qu, X. Huang, F. Qiu, J. Lumines. 201, 182 (2018)

    CAS  Google Scholar 

  7. F. Guo, H. Sun, X. Huang, W. Shi, C. Yan, J. Chem. Technol. Biotechnol. (2020). https://doi.org/10.1002/jctb.6384

    Article  Google Scholar 

  8. D.G. Bassyouni, H.A. Hamad, E.S.Z. El-Ashtoukhy, N.K. Amin, M.M.A. El-Latif, J. Hazard. Mater. 335, 178 (2017)

    CAS  Google Scholar 

  9. C. Li, M. Zhang, C. Song, P. Tao, M. Sun, M. Shao, T. Wang, J. AOAC Int. 101, 1341 (2018)

    CAS  Google Scholar 

  10. Y. Chen, X. Bai, Catalysts. 10, 142 (2020)

    CAS  Google Scholar 

  11. X. Zhao, J. Li, X. Cui, Y. Bi, X. Han, J. Environ. Chem. Eng. 8, 103548 (2020)

    CAS  Google Scholar 

  12. X. Yang, Z. Tian, Y. Chen, H. Huang, J. Hu, Int. J. Hydrog. Energy. 45, 12889 (2020)

    CAS  Google Scholar 

  13. T. Ahamad, M. Naushad, Y. Alzaharani, S.M. Alshehri, J. Mol. Liq. 311, 11339 (2020)

    Google Scholar 

  14. J. Singh, R.K. Soni, Appl. Surf. Sci. 521, 146420 (2020)

    CAS  Google Scholar 

  15. M. Sun, X. Wang, Z. Chen, M. Murugananthan, Y. Chen, Y. Zhang, Appl. Catal. B-Environ. 273, 119061 (2020)

    CAS  Google Scholar 

  16. J. Singh, S. Kumar, Rishikesh, A.K. Manna, R.K. Soni, Opt. Mater. 107, 110138 (2020)

    CAS  Google Scholar 

  17. Q. Cai, Z. Liu, J. Li, C. Han, Z. Tong, Catal. Lett. 150, 1089 (2019)

    Google Scholar 

  18. J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, K.-H. Lam, Nano Energy. 61, 27 (2019)

    CAS  Google Scholar 

  19. F. Deng, F. Zhong, P. Hu, X. Pei, X. Luo, S. Luo, J. Nanopart. Res. 19, 14 (2017)

    Google Scholar 

  20. B.M.M. May, S. Parani, O.S. Oluwafemi, Mater. Lett. 236, 432 (2019)

    CAS  Google Scholar 

  21. L. Tan, S. Liu, S. Li, X. Chronakis, I.S. Shen, Y. Shen, Colloid Surf. B-Biointerfaces 125, 222 (2014)

    Google Scholar 

  22. J. Singh, S. Palsaniya, R.K. Soni, Appl. Surf. Sci. 527, 146796 (2020)

    CAS  Google Scholar 

  23. J. Singh, R.K. Soni, J. Mater. Sci.-Mater. Electron. 31, 12546 (2020)

    CAS  Google Scholar 

  24. J. Singh, A.K. Manna, R.K. Soni, Appl. Surf. Sci. 530, 147258 (2020)

    CAS  Google Scholar 

  25. B. Liu, X. Li, Q. Zhao, J. Ke, M. Tadé, S. Liu, Appl. Catal. B-Environ. 185, 1 (2016)

    Google Scholar 

  26. E.S. Aazam, J. Ind. Eng. Chem. 20, 4008 (2014)

    CAS  Google Scholar 

  27. J. Satra, P. Mondal, U.K. Ghorui, B. Adhikary, Sol. Energy Mater. Sol. Cells. 195, 24 (2019)

    CAS  Google Scholar 

  28. H. Li, W. Song, X. Cui, Y. Li, B. Hou, X. Zhang, Y. Wang, L. Cheng, P. Zhang, J. Li, Nanotechnology 31, 305704 (2020)

    CAS  Google Scholar 

  29. F. Deng, F. Zhong, D. Lin, L. Zhao, Y. Liu, J. Huang, X. Luo, S. Luo, D.D. Dionysiou, Appl. Catal. B-Environ. 219, 163 (2017)

    CAS  Google Scholar 

  30. J. Nong, G. Lan, W. Jin, P. Luo, C. Guo, X. Tang, Z. Zang, W. Wei, J. Mater. Chem. C. 7, 9830 (2019)

    CAS  Google Scholar 

  31. P. Parnicka, A. Mikolajczyk, H.P. Pinto, W. Lisowski, T. Klimczuk, G. Trykowski, B. Bajorowicz, A. Zaleska-Medynska, Appl. Surf. Sci. 525, 146596 (2020)

    CAS  Google Scholar 

  32. C. NeelaMohan, V. Renuga, J. Alloy. Compd. 787, 972 (2019)

    CAS  Google Scholar 

  33. W. Hoisang, T. Uematsu, T. Yamamoto, T. Torimoto, S. Kuwabata, Nanomaterials. 9, 1763 (2019)

    CAS  Google Scholar 

  34. R. Sakai, H. Onishi, S. Ido, S. Furumi, Nanomaterials 9, 263 (2019)

    CAS  Google Scholar 

  35. L. Chen, L. Tian, X. Zhao, Z. Hu, J. Fan, K. Lv, Arabian J. Chem. 13, 4404 (2020)

    CAS  Google Scholar 

  36. X. Yang, Y. Wang, L. Zhang, H. Fu, P. He, D. Han, T. Lawson, X. An, Catalysts. 10, 139 (2020)

    CAS  Google Scholar 

  37. W. Xu, H. Liu, D. Zhou, X. Chen, N. Ding, H. Song, H. Agren, Nano Today. 33, 100892 (2020)

    CAS  Google Scholar 

  38. N. Li, H. Gao, X. Wang, S. Zhao, D. Lv, G. Yang, X. Gao, H. Fan, Y. Gao, L. Ge, Chin. J. Catal. 41, 426 (2020)

    CAS  Google Scholar 

  39. A.P. Manuel, A. Kirkey, N. Mahdi, K. Shankar, J. Mater. Chem. C. 7, 1821 (2019)

    CAS  Google Scholar 

  40. X. Yang, X. Wu, J. Li, Y. Liu, RSC Adv. 9, 29097 (2019)

    CAS  Google Scholar 

  41. Q. Liu, J. Zhang, F. Xing, C. Cheng, Y. Wu, C. Huang, Appl. Surf. Sci. 500, 144214 (2020)

    CAS  Google Scholar 

  42. B. Shao, W. Zhao, S. Miao, J. Huang, L. Wang, G. Li, W. Shen, Chin. J. Catal. 40, 1534 (2019)

    CAS  Google Scholar 

  43. J. Singh, A.K. Manna, R.K. Soni, J. Mater. Sci.-Mater. Electron. 30, 16478 (2019)

    CAS  Google Scholar 

  44. L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang, T. Xiong, Appl. Catal. B-Environ. 227, 376 (2018)

    CAS  Google Scholar 

  45. J. Singh, R.K. Soni, New J. Chem. (2020). https://doi.org/10.1039/D0NJ03084H

    Article  Google Scholar 

  46. J. Li, P. Jiménez-Calvo, E. Paineau, M.N. Ghazzal, Catalysts. 10, 89 (2020)

    CAS  Google Scholar 

  47. L. Shi, R. Wang, Y. Liu, J. Sun, Thin Solid Films 693, 137677 (2020)

    CAS  Google Scholar 

  48. T. Soltani, B.K. Lee, Sci. Total Environ. 736, 138640 (2020)

    CAS  Google Scholar 

  49. L. Mao, Y.-C. Huang, Y. Fu, C.-L. Dong, S. Shen, Sci. Bull. 64, 1262 (2019)

    CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 21563003) and the College of Pharmacy Research Team of Dali University for Synthesis and Application of Micro/Nanomaterials. The authors also thank Xiaodong Wen for providing help by the project of Dali University Innovation Team for Research and Application of Pharmaceutical Analysis Technology (Grant No. ZKLX2019216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meixian Guo or Ya Yan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Lan, H., Guo, J. et al. Synthesis of Au-loaded AgInS2 nanoparticles with highly enhanced visible light photocatalytic performances. J Mater Sci: Mater Electron 31, 22284–22296 (2020). https://doi.org/10.1007/s10854-020-04730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04730-8

Navigation