Skip to main content
Log in

Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phase junction construction and surface modification are two practical engineering strategies toward efficient photocatalysis. In the present work, core-shell TiO2@MoS2 heterojunction composites were directly constructed via one-step hydrothermal method. The prepared catalysts are characterized by X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, Transmission electron microscopy, and N2 adsorption–desorption studies to know the structural, morphological, and textural properties. The optical absorption and prevention of electron–hole recombination process was studied by UV–Vis diffuse reflectance spectra (DRS) and photoluminescence analysis. The photocatalytic degradation experiment was carried out using methyl orange (MO) and 4-nitrophenol (4-NP) for all the catalysts under visible light irradiation. The results reveal that MoS2@TiO2 heterojunction catalyst shows excellent photocatalytic activity toward 4-NP such as high removal efficiency (96%), high apparent constant (0.0242 min−1), and long-term stability. The enhancement in the photodegradation is due to dandelion clock heterostructures of MoS2@TiO2 possess high specific surface area (103.5 m2/g), specific pores (11.8 nm). The photoelectrochemical results suggest that MoS2@TiO2 catalyst exhibits the high photoresponse than compared with pure MoS2 and TiO2 catalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  2. S. Bai, L. Wang, X. Chen, J. Du, Y. Xiong, Chemically exfoliated metallic MoS2 Nanosheets: A promising supporting co-catalyst for enhancing the Photocatalytic performance of TiO2 nanocrystals. Nano Res. 8, 175–183 (2015)

    CAS  Google Scholar 

  3. U. Krishnan, M. Kaur, K. Singh, G. Kaur, P. Singh, M. Kumar, A. Kumar, MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant. J. Mater. Sci. Mater. Electron. 30, 3711–3721 (2019)

    CAS  Google Scholar 

  4. U. Krishnan, M. Kaur, G. Kaur, K. Singh, A.R. Dogra, M. Kumar, A. Kumar, MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Mater. Res. Bull. 111, 212–221 (2019)

    CAS  Google Scholar 

  5. A.K.G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, ron Disulfide (FeS2): A promising material for removal of industrial pollutants. Chemistryselect 2, 2166–2173 (2017)

    CAS  Google Scholar 

  6. Q. Liang, Z. Li, X. Yu, Z.H. Huang, F. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced Photocatalytic hydrogen evolution. Adv. Mater. 27, 4634–4639 (2015)

    CAS  Google Scholar 

  7. I. Dincer, Green methods for hydrogen production. Int. J. Hydrog. Energy 37, 1954–1971 (2012)

    CAS  Google Scholar 

  8. R. Li, Latest Progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 38, 5–12 (2017)

    CAS  Google Scholar 

  9. T. Banerjee, A. Mukherjee, Overall water splitting under visible light irradiation using nanoparticulate RuO2 loaded Cu2O powder as photocatalyst. Energy Procedia 54, 221–227 (2014)

    CAS  Google Scholar 

  10. D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 38, 1999–2011 (2009)

    CAS  Google Scholar 

  11. D. Bahnemann, Photocatalytic water treatment: Solar energy applications. Sol. Energy 77, 445–459 (2004)

    CAS  Google Scholar 

  12. P.V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C. 111, 2834–2860 (2007)

    CAS  Google Scholar 

  13. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 334, 928–935 (2011)

    CAS  Google Scholar 

  14. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  15. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-Ion Batteries. Adv. Funct. Mater. 23, 947–958 (2013)

    CAS  Google Scholar 

  16. H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)

    CAS  Google Scholar 

  17. D.-D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016)

    CAS  Google Scholar 

  18. Y. Tang, Z. Jiang, G. Xing, A. Li, P.D. Kanhere, Y. Zhang, T.C. Sum, S. Li, X. Chen, Z. Dong, Z. Chen, Efficient ag@ AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv. Funct. Mater. 23, 2932–2940 (2013)

    CAS  Google Scholar 

  19. J. Mao, M. Ge, J. Huang, Y. Lai, C. Lin, K. Zhang, K. Meng, Y. Tang, Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A 5, 11873–11881 (2017)

    CAS  Google Scholar 

  20. M. Sumathi, A. Prakasam, P.M. Anbarasan, High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route. J. Mater. Sci. Mater. Electron. 30, 3294–3304 (2019)

    CAS  Google Scholar 

  21. M. Sumathi, A. Prakasam, P.M. Anbarasan, Fabrication of hexagonal disc shaped nanoparticles g-C3N4/NiO heterostructured nanocomposites for efficient visible light photocatalytic performance. J. Clus. Sci. 30, 757–766 (2019)

    CAS  Google Scholar 

  22. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Clus. Sci. 30, 351–363 (2019)

    CAS  Google Scholar 

  23. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    CAS  Google Scholar 

  24. L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, Y. Zhang, W. Zhou, High thermo-stable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl Catal B 180, 521–529 (2016)

    CAS  Google Scholar 

  25. S. Pan, X. Liu, M. Guo, S. Yu, H. Huang, H. Fan, G. Li, Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J. Mater. Chem. A 3, 11437–11443 (2015)

    CAS  Google Scholar 

  26. Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, A. Li, Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 360, 298–305 (2016)

    CAS  Google Scholar 

  27. Z. Fan, F. Meng, J. Gong, H. Li, A. Li, Growth mechanism and photocatalytic activity of chrysanthemum-like anatase TiO2 nanostructures. Ceram. Int. 42, 6282–6287 (2016)

    CAS  Google Scholar 

  28. R. Qin, F. Meng, M.W. Khan, B. Yu, H. Li, Z. Fan, J. Gong, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts. Mater. Lett. 240, 84–87 (2019)

    CAS  Google Scholar 

  29. K. Guo, Z. Liu, J. Han, X. Zhang, Y. Li, T. Hong, C. Zhou, Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides. J. Power Sources 285, 185–194 (2015)

    CAS  Google Scholar 

  30. G. Moon, W. Kim, A.D. Bokare, N. Sung, W. Choi, Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 7, 4023–4028 (2014)

    CAS  Google Scholar 

  31. W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A.A. Elzatahry, D. Al-Dahyan, Y. Xia, D. Zhao, General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 15, 2186–2193 (2015)

    CAS  Google Scholar 

  32. D. Gopalakrishnan, D. Damien, M.M. Shaijumon, MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8, 5297–5303 (2014)

    CAS  Google Scholar 

  33. Q. Liu, X. Li, Q. He, A. Khalil, D. Liu, T. Xiang, X. Wu, L. Song, Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small. 11, 5556–5564 (2015)

    CAS  Google Scholar 

  34. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    CAS  Google Scholar 

  35. M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50, 15447–15449 (2014)

    CAS  Google Scholar 

  36. H. Li, Y. Wang, G. Chen, Y. Sang, H. Jiang, J. He, X. Li, H. Liu, Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale. 8, 6101–6109 (2016)

    CAS  Google Scholar 

  37. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as co catalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)

    CAS  Google Scholar 

  38. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: An efficient electrochemical and photocatalytic performance. J. Iran. Che. Soc. 15, 1419–1430 (2018)

    CAS  Google Scholar 

  39. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: Design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    CAS  Google Scholar 

  40. X. Yan, K. Liu, W. Shi, Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids Surf. A Physicochem. Eng. Aspects 520, 138–145 (2017)

    CAS  Google Scholar 

  41. J. Zhang, L. Huang, Z. Lu, Z. Jin, X. Wang, G. Xu, E. Zhang, H. Wang, Z. Kong, J. Xi, Z. Ji, Crystal face regulating MoS2/TiO2 (001) heterostructure for high photocatalytic activity. J. Alloy. Compd. 688, 840–848 (2016)

    CAS  Google Scholar 

  42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mahalakshmi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, G., Rajeswari, M. & Ponnarasi, P. Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance. J Mater Sci: Mater Electron 31, 22252–22264 (2020). https://doi.org/10.1007/s10854-020-04726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04726-4

Navigation