Skip to main content
Log in

Microwave dielectric properties of BaWO4-doped Ba(Mg1/3Nb2/3)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Ba(Mg1/3Nb2/3)O3 (BMN) ceramics with x (x = 0–9) wt% BaWO4 were synthesized using the conventional solid-state sintering technique. Effects of BaWO4 addition on the microstructure and microwave dielectric properties of BMN ceramics were evaluated. X-ray diffraction (XRD) analysis showed that there were three phases: main crystalline phase Ba(Mg1/3Nb2/3)O3 and secondary phases BaWO4 and Ba5Nb4O15. Meanwhile, the (100) super-lattice reflection peaks shifted to a higher 2θ angle with increasing BaWO4 content. SEM photographs suggested that BaWO4 working as a sintering additive promoted the densification and grain growth. The dielectric properties were examined by Vector network analyzer. The dielectric constant (εr) was largely determined by the relative density and phase composition. Meanwhile, the addition of BaWO4 had a positive effect on the Q × f value, for example the specimen with x = 5 possessed the highest Q × f value of 111,300 GHz. Optimum microwave dielectric properties (εr = 31.7, Q × f = 111,300 GHz (f = 8 GHz) and τf = 0.16 ppm/°C) were obtained for the specimen with x = 5 sintered at 1350 °C for 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Li, X.Q. Chen, Q.Y. Xiang, B. Tang, J.W. Lu, Y.H. Zou, S.R. Zhang, Ceram Int. 45, 14160 (2019)

    Article  CAS  Google Scholar 

  2. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, J. Mater. Chem. 6, 9290 (2018)

    CAS  Google Scholar 

  3. L.X. Pang, D. Zhou, J. Am. Ceram. Soc. 102, 2278 (2019)

    Article  CAS  Google Scholar 

  4. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, J. Mater. Chem. 5, 10094 (2017)

    CAS  Google Scholar 

  5. H. Hughes, D.M. Iddles, I.M. Reaney, Appl. Phys. Lett. 79, 2952 (2001)

    Article  CAS  Google Scholar 

  6. J.I. Yang, S. Nahm, C.H. Choi, H.J. Lee, H.M. Park, J. Am. Ceram. Soc. 85, 165 (2002)

    Article  CAS  Google Scholar 

  7. S. Nomura, Ferroelectrics 49, 61 (1983)

    Article  CAS  Google Scholar 

  8. S. Peng, M.Q. Wu, J.M. Xu, T.C. Huang, G.F. Luo, J.K. Yu, J.H. Zhou, J. Mater. Sci.: Mater. Electron. 28, 3349 (2017)

    CAS  Google Scholar 

  9. J.B. Lim, J. Son, S. Nahm, W.S. Lee, M.J. Yoo, N.G. Gang, H.J. Lee, Y.S. Kim, Jpn. J. Appl. Phys. 43, 5388 (2004)

    Article  CAS  Google Scholar 

  10. T.L. Sun, L. Li, M.M. Mao, X.M. Chen, Int. J. Appl. Ceram. Technol. 10, E210 (2013)

    Article  CAS  Google Scholar 

  11. L. Shan, W. Pan, Key Eng. Mater. 336, 301 (2007)

    Article  Google Scholar 

  12. H. Wang, R.L. Fu, H. Liu, J. Fang, G.J. Li, J. Mater. Sci.: Mater. Electron. 30, 5726 (2019)

    CAS  Google Scholar 

  13. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93, 787 (2010)

    Article  CAS  Google Scholar 

  14. B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  15. S. Peng, G.F. Luo, M.Q. Wu, S.Q. Yu, J.M. Xu, T.C. Huang, J.H. Zhou, J. Electron. Mater. 46, 2172 (2017)

    Article  CAS  Google Scholar 

  16. S.Z. Jiang, Z.X. Yue, F. Shi, J. Alloys Compd. 646, 49 (2015)

    Article  CAS  Google Scholar 

  17. R.D. Shannon, Acta Crystallogr. A. 32, 751 (1976)

    Article  Google Scholar 

  18. B. Tang, Q.Y. Xiang, Z.X. Fang, X. Zhang, Z. Xiong, H. Li, C.L. Yuan, S.R. Zhang, Ceram. Int. 45, 11484 (2019)

    Article  CAS  Google Scholar 

  19. N. Setter, L.E. Cross, J. Mater. Sci. 15, 2478 (1980)

    Article  CAS  Google Scholar 

  20. B. Tang, Z.X. Fang, Y.X. Li, X. Zhang, S.R. Zhang, J. Mater. Sci.: Mater. Electron. 26, 6585 (2015)

    CAS  Google Scholar 

  21. C.L. Huang, K.H. Chiang, C.Y. Huang, Mater. Chem. Phys. 90, 373 (2005)

    Article  CAS  Google Scholar 

  22. E.Z. Li, S.X. Duan, S.M. Sun, H. Li, Y.A. Mi, X.H. Zhou, S.R. Zhang, J. Electron. Mater. 42, 3519 (2013)

    Article  CAS  Google Scholar 

  23. H.F. Zhou, H. Wang, K.C. Li, H.B. Yang, M.H. Zhang, X. Yao, J. Electron. Mater. 38, 711 (2009)

    Article  CAS  Google Scholar 

  24. S.Q. Yu, B. Tang, X. Zhang, S.R. Zhang, X.H. Zhou, J. Am. Ceram. Soc. 95, 1939 (2012)

    Article  CAS  Google Scholar 

  25. C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, T. Shao, Y.Y. Wang, J. Lu, Q.C. Wang, X.J. Kuang, L. Fang, F. Shi, X.P. Jing, J. Appl. Phys. 115, 114103 (2014)

    Article  Google Scholar 

  26. C. Vineis, P.K. Davies, T. Negas, S. Bell, Mater. Res. Bull. 31, 431 (1996)

    Article  CAS  Google Scholar 

  27. J.H. Paik, S. Nahm, J.D. Bylin, M.H. Kim, H.J. Lee, J. Mater. Sci. Lett. 17, 1777 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific Research Fund of Hunan Provincial Education Department (Grant No. 18B428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Xu, J. Microwave dielectric properties of BaWO4-doped Ba(Mg1/3Nb2/3)O3 ceramics. J Mater Sci: Mater Electron 31, 22171–22178 (2020). https://doi.org/10.1007/s10854-020-04720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04720-w

Navigation