Skip to main content
Log in

Preparation of Fe-doped NaBi(MoO4)2 nanorods and their improved gas-sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NaBi(MoO4)2 nanorods and nanoparticles were prepared by a facile solvothermal method with or without nitric acid. The crystal phase, morphology, and microstructure of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and the nitrogen adsorption isotherms. The NaBi(MoO4)2 nanorods and nanoparticles were tetragonal scheelite nanocrystals, and the nanorods were composed of 4–6 spheritic nanograins which were about 19 nm in diameter. The nanoparticles were aggregated randomly by 25 nm NaBi(MoO4)2 crystallites. Both NaBi(MoO4)2 nanorods and nanoparticles were mesopore structure. The sensors based on NaBi(MoO4)2 nanorods and nanoparticles exhibited high gas-sensing response (30.5 and 24.7) to 100 ppm n-butanol at optimal operating temperature of 370 °C.The composites of Fe-doped NaBi(MoO4)2 nanorods were prepared, and they showed better gas-sensing performances than pure NaBi(MoO4)2 nanorods due to promoting oxygen adsorption and catalysis by Fe doped. The highest sensitivity of the sensor based on 1 wt% Fe-doped NaBi(MoO4)2 nanorods was 48.4 to 100 ppm n-butanol at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Tonezzer, Selective gas sensor based on one single SnO2 nanowire. Sensor Actuat. B Chem. 288, 53–59 (2019)

    Article  CAS  Google Scholar 

  2. Y. Qu, H. Wang, H. Chen, J. Xiao, Z.D. Lin, K. Dai, Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2. RSC Adv. 5, 16446–16449 (2015)

    Article  CAS  Google Scholar 

  3. Z.D. Lin, N. Li, Z. Chen, P. Fu, The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sensor Actuat. B Chem. 239, 501–510 (2017)

    Article  CAS  Google Scholar 

  4. L.M. Liu, T. Li, Z.C. Yi, F. Chi, Z.D. Lin, X.W. Zhang et al., Conductometric ozone sensor based on mesoporous ultrafine Co3O4 nanobricks. Sensor Actuat. B Chem. 297, 126815 (2019)

    Article  CAS  Google Scholar 

  5. Z. Lin, M. Xu, P. Fu, Q. Deng, Crystal plane control of 3D iron molybdate and the facet effect on gas sensing performances. Sensors Actuat. B Chem. 254, 755 (2017)

    Article  Google Scholar 

  6. H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensor Actuat. B Chem. 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  7. Z.D. Lin, F. Guo, C. Wang, X.H. Wang, K. Wang, Y. Qu, Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Adv 4, 5122–5129 (2014)

    Article  CAS  Google Scholar 

  8. J.F. Tan, M.H. Dun, L. Li, J.Y. Zhao, W.H. Tan, Z.D. Lin et al., Synthesis of hollow and hollowed-out Co3O4 microspheres assembled by porous ultrathin nanosheets for ethanol gas sensors: responding and recovering in one second. Sensor Actuat. B Chem. 249, 44–52 (2017)

    Article  CAS  Google Scholar 

  9. T.W. Yuan, Z.J. Li, W.S. Zhang, Z.G. Xue, X.Q. Wang, Z.H. Ma et al., Highly sensitive ethanol gas sensor based on ultrathin nanosheets assembled Bi2WO6 with composite phase. Sci. Bull. 64, 595–602 (2019)

    Article  CAS  Google Scholar 

  10. Z.D. Lin, M.Y. Xu, Y.Y. Hong, X.H. Wang, P. Fu, Surfactant-free hydrothermal synthesis and gas-sensing properties of NaBi(MoO4)2 nanocrystals. Mater. Lett. 168, 72–75 (2016)

    Article  CAS  Google Scholar 

  11. L. Jing, F. Ping, Q. Yang, Z. Lin, Z. Wen, The n-butanol gas-sensing properties of monoclinic scheelite BiVO4 nanoplates. Physica E 103, 71–75 (2018)

    Article  Google Scholar 

  12. H. Golmojdeh, M.A. Zanjanchi, Ethanol gas sensor based on pure and La-doped bismuth vanadate. J. Electron. Mater. 43, 528–534 (2014)

    Article  CAS  Google Scholar 

  13. J. Yang, P. Fu, Z.D. Lin, Preparation of KBi(MoO4)2 nanocrystallite by solvothermal process and its gas-sensing properties. Mater. Res. Express. 5, 095083 (2018)

    Google Scholar 

  14. R.K. Pushpendra, R. Kunchala, B.S. Kalia, Naidu, Upconversion luminescence properties of NaBi(MoO4)2:Ln3+, Yb3+ (Ln = Er, Ho) nanomaterials synthesized at room temperature. Ceram. Int. 46, 18614–18622 (2020)

    Article  CAS  Google Scholar 

  15. Y.J. Li, T.P. Can, Z.M. Mei, X.P. Li, D.W. Sun, Separating type I heterojunction of NaBi(MoO4)2/Bi2MoO6 by TiO2 nanofibers for enhanced visible-photocatalysis. Chem. Phys. 533, 110696 (2020)

    Article  CAS  Google Scholar 

  16. Pushpendra, R.K. Kunchala, S.N. Achary, A.K. Tyagi, B.S. Naidu, Rapid, room temperature synthesis of Eu3+ doped NaBi(MoO4)2 nanomaterials: structural optical, and photoluminescence properties. Cryst. Growth Des. 19, 3379–3388 (2019)

    Article  CAS  Google Scholar 

  17. L.M. Liu, H.H. Wang, X.W. Zhang, Z.D. Lin, Synthesis of novel RuO2/NaBi(MoO4)2 nanosheets composite and its gas sensing performances towards ethanol. Sensor Actuat. B Chem. 237, 275–283 (2016)

    Article  CAS  Google Scholar 

  18. C. Zhu, W. Guo, F. Du, F. Ping, Q. Deng, Z. Lin, One-pot synthesis of NaBi(MoO4)2 nanorods and their gas-sensing properties. Mater. Lett. 220, 172–174 (2018)

    Article  CAS  Google Scholar 

  19. Z.W. Chen, Z.D. Lin, M.Y. Xu, Y.Y. Hong, N. Li, P. Fu et al., Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets. Electron. Mater. Lett. 12, 343–349 (2016)

    Article  CAS  Google Scholar 

  20. Y. Qu, H. Wang, H. Chen, M.M. Han, Z.D. Lin, Synthesis, characterization and sensing properties of mesoporous C/SnO2 nanocomposite. Sensor Actuat. B Chem. 228, 595–604 (2016)

    Article  CAS  Google Scholar 

  21. M. Xu, Z. Lin, Y. Hong, Z. Chen, P. Fu, D. Tang, Preparation and hydrogen sulfide gas-sensing performances of RuO2 /NaBi(MoO4) 2 nanoplates. J. Alloy. Compd. 688, 504–509 (2016)

    Article  CAS  Google Scholar 

  22. C.H. Zhu, F.P. Du, P. Fu, S.G. Wang, Z.D. Lin, Highly sensitive sensor based on NaBi(MoO4)(2)/MWCNT composites. Mater. Res. Express. 5, 125016 (2018)

    Article  Google Scholar 

  23. J. Yang, P. Fu, Z.D. Lin, Preparation of KBi(MoO4)2 nanocrystallite by solvothermal process and its gas-sensing properties. Mater. Res. Express 5, 065033 (2018)

    Article  Google Scholar 

  24. K. Suematsu, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, Determination of oxygen adsorption species on SnO2: exact analysis of gas sensing properties using a sample gas pretreatment system. J. Electrochem. Soc. 161, B123–B128 (2014)

    Article  CAS  Google Scholar 

  25. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)

    Article  CAS  Google Scholar 

  26. C.H. Zhu, W.Y. Guo, F.P. Du, P. Fu, Q.R. Deng, Z.D. Lin, One-pot synthesis of NaBi(MoO4)2 nanorods and their gas-sensing properties. Mater. Lett. 220, 172–174 (2018)

    Article  CAS  Google Scholar 

  27. H. Wang, Y. Qu, H. Chen, Z. Lin, K. Dai, Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sensor Actuat. B Chem. 201, 153–159 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Guangxi Key Laboratory of Information Materials (191004-K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Wang, S., Lin, Z. et al. Preparation of Fe-doped NaBi(MoO4)2 nanorods and their improved gas-sensing properties. J Mater Sci: Mater Electron 31, 22143–22150 (2020). https://doi.org/10.1007/s10854-020-04716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04716-6

Navigation