Skip to main content
Log in

The role of substrate temperature on the performance of humidity sensors manufactured from cerium oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cerium oxide (CeO2) thin films as humidity sensors are obtained by pulsed laser deposition (PLD) grown on Si (100) substrate. CeO2 nanoparticles were taken as target materials for PLD technique. The effect of film deposition condition, such as deposition temperature on performance sensor, was explored. The substrate temperature ranges varied from 300 to 700 °C. The structural and surface morphologies were examined by X-ray diffractometer (XRD) and scanning electronic microscopy (SEM), respectively. The capacitance and resistance of the sensors were tested. The sensor utilizing CeO2 films exhibited high sensitivity, and the increase in humidity led to a gradual increase in sensitivity and decreased resistance. The sensor performance is highly dependent on morphology and surface, which in turn is affected by the change in electrical properties of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data material

Data will not be shared because these data are useful for the advancement in designing a better photonic sensor with high-quality factor and sensitivity.

References

  1. C. Wang, A. Zhang, H.R. Karimi, Effects of surfactants on the performance of CeO2 humidity sensor. Math. Probl. Eng. 2014, 6 (2014)

    Google Scholar 

  2. L. Zhang, J. Zhang, Y. Huang, H. Xu, X. Zhang, H. Lu, K. Xu, P.K. Chu, F. Ma, Stability and sensing enhancement by nanocubic CeO2 with 100 polar facets on graphene for NO2 at room temperature. ACS Appl. Mater. Interfaces. 12(4), 4722–4731 (2020)

    CAS  Google Scholar 

  3. V. Manikandan, I. Petrila, S. Vigneselvan, A. Mirzaei, R.S. Mane, Enhanced humidity sensing properties of Fe-doped CeO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 8815–8824 (2020)

    CAS  Google Scholar 

  4. C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, Y. Jiang, A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B Chem. 261, 587–597 (2018)

    CAS  Google Scholar 

  5. M. Velumani, S.R. Meher, Z.C. Alex, Composite metal oxide thin film based impedometric humidity sensors. Sens. Actuators B Chem. 301(May), 127084 (2019)

    CAS  Google Scholar 

  6. M. Pan, J. Sheng, J. Liu, Z. Shi, L. Jiu, Design and verification of humidity sensors based on magnesium oxide micro-arc oxidation film layers. Sensors 20(6), 1736 (2020)

    CAS  Google Scholar 

  7. P.G. Stojanović, Design, fabrication and characterization of humidity and force sensors based on carbon nanomaterials PhD thesis candidate: Dragana Vasiljević, MSc Advisor. Univ. NOVI SAD Fac. Tech. Sci. NOVI SAD, vol. PhD Thesis (2018)

  8. H. Farahani, R. Wagiran, M. Nizar, Humidity sensoers principle, mechanism and fabrication technology: a comprehensive review. Sensors 14, 7881–7939 (2014)

    Google Scholar 

  9. K. Shaheen, Z. Shah, B. Khan, Adnan, M. Omer, M. Alamzeb, H. Suo, Electrical, photocatalytic, and humidity sensing applications of mixed metal oxide nanocomposites. ACS Omega 5(13), 7271–7279 (2020)

    CAS  Google Scholar 

  10. Y. Liu, H. Huang, L. Wang, D. Cai, B. Liu, D. Wang, Q. Li, T. Wang, Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor. Sens. Actuators B Chem. 223, 730–737 (2016)

    CAS  Google Scholar 

  11. T. Toloshniak, Y. Guhel, A. Besq, B. Boudart, First results of humidity sensors based on CeO2 thick film deposited by a new deposition technique from a suspension of nanoparticles. Microelectron. Eng. 207(November 2018), 7–14 (2019)

    CAS  Google Scholar 

  12. A. Tripathy, S. Pramannik, J. Cho, Role of morphological structure, doping and coating of different materials in the sensing characteristics of humidity sensor. Sensors 14, 16343–16422 (2014)

    Google Scholar 

  13. S. Ghanem, A. Telia, C. Boukaous, M.S. Aida, Humidity sensor characteristics based on ZnO nanostructure grown by sol-gel method. Int. J. Nanotechnol. 12, 697–707 (2015)

    CAS  Google Scholar 

  14. J. Herran, I. Fernandez, E. Ochoteco, G. Cabanero, H. Granda, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuators B: Chem. 198, 239–242 (2014)

    CAS  Google Scholar 

  15. K. Ula, G. Aasty, J.K. Kayau, High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens. Actuators B: Chem. B 213, 382–389 (2015)

    Google Scholar 

  16. Q. Yuan, N. Li, J. Tu, X. Li, R. Wang, T. Zhang, C. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite. Sens. Actuators B: Chem. 149, 413–419 (2010)

    CAS  Google Scholar 

  17. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B: Chem. 159, 1–7 (2011)

    CAS  Google Scholar 

  18. M. Gong, Y. Li, Y. Guo, X. Lv, X. Dou, 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators B: Chem. 262, 350–358 (2018)

    CAS  Google Scholar 

  19. W.-D. Lin, C.-T. Liao, T.-C. Chang, S.-H. Chen, R.-J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process. Sens. Actuators B: Chem. 209, 555–556 (2015)

    CAS  Google Scholar 

  20. P.-G. Su, C.-P. Wang, Flexible humidity sensor based on TiO2 nanoparticles polypyrrole-poly [30(methacrylaminnol)] trimethyl ammonium chloride composite materials. Sens. Actuator B: Chem. 209, 555–561 (2008)

    Google Scholar 

  21. Y.F. Dong, Y. Li, W.F. Jiang, H.Y. Wang, J. Li, Capacitive humidity sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array. Phys. E: Low-dimens. Syst. Nanostruct. 41, 711–714 (2009)

    CAS  Google Scholar 

  22. V. Shakya, N. Kumar Pandy, Structural and moisture sensing properties of WO3-ZnO nanocomposites synthesized by a soft chemical route. Mater. Today: Proceed. 5, 9082–9088 (2018)

    CAS  Google Scholar 

  23. H.T. Hsueh, S.J. Chang, F.Y. Hung, B.T. Dai, CuO nanowire-based humidity sensors prepared on glass substrate. Sens. Actuators B: Chem. 156, 906–911 (2011)

    CAS  Google Scholar 

  24. N. Pandey, K. Tiwari, A. Roy, Moisture sensing application of Cu-2O doped ZnO nanocomposite. IEEE Sens. J. 11, 2142–2148 (2011)

    CAS  Google Scholar 

  25. M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized microwave irradiation method. Mater. Sci. Eng. C 31, 840–844 (2011)

    CAS  Google Scholar 

  26. Y. Haihong, Y. Ke, Z. Zhengle, Z. Min, L. Lei, Humidity sensing properties of flower-like VO2(B) and VO2(M) nanostructure. Electroanalysis 23, 1725–1728 (2011)

    Google Scholar 

  27. E.S. Araujo, J. Libardi, P.M. Faia, Characterization and electrical response to humidity sintering polymeric electrospun fibers of vanadium oxide-(TiO2/WO3). J. Electron. Mater. 47, 2710–2717 (2018)

    CAS  Google Scholar 

  28. A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, K.A. Bukunov, V.G. Sevastyanov, N.T. Kuznetsov, Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method. J. Alloys Compd. 773, 1023–1032 (2019)

    CAS  Google Scholar 

  29. M.Y. Cho, S. Kim, I.S. Kim, E.S. Kim, Z.J. Wang, N.Y. Kim, S.W. Kim, J.M. Oh, Perovskite-induced Ultrasensitive and highly stable humidity sensor system prepared by aersol deposition room temperature. Adv. Funct. Mater. 19, 7449 (2019)

    Google Scholar 

  30. T. Itoh, I. Matsubara, K. Kanemasta, W. Shin, Effect high-humidity aging on performance of tungsten oxide typ aromatic compound sensors. Sens. Mater. 24(1), 13–19 (2012)

    CAS  Google Scholar 

  31. N.K. Pandey, V. Shakya, S. Mishra, Characterization and humidity sensing application of WO3-SnO2 nanocomposite. J. Appl. Phys. 4(3), 10–17 (2013)

    Google Scholar 

  32. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Google Scholar 

  33. H. Mou, Y. Sun, H. Zhoa, J. Xu, X. Wang, Low-temperature hydrogen detection sensor based on CeO2-DOPED SnO2. J. Mater. Sci.: Mater. Electron. 31, 15785–15793 (2020)

    CAS  Google Scholar 

  34. D. Nunes, A. Pimentel, A. Goncalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34(4), 1–178 (2019)

    Google Scholar 

  35. F.J. Romero, A. Rivadeneyra, M. Becherer, D.P. Morales, N. Rodríguez, Fabrication and characterization of humidity sensors based on graphene oxide-PEDOT:PSS composites on a flexible substrate. Micromachines 11(2), 148 (2020)

    Google Scholar 

  36. P. Nagaraju, Y. Vijayakumar, D.M. Phase, R.J. Choudary, M.V. Ramana Reddy, Microstructural, optical and gas sensing characterization of laser ablated nanostructured ceria thin films. J. Mater. Sci.: Mater. Electron. 27(1), 651–658 (2016)

    CAS  Google Scholar 

  37. L.J. Gole, Nanostructured metal oxide modification of a porous silicon interface for sensor applications: the question of water interaction, stability, platform diversity and sensitivity, and selectivity. AIMS Electron. Electr. Eng. 4(1), 87–113 (2020)

    Google Scholar 

  38. M.R. Mohammadi, D.J. Fray, Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: effect of Ce:Ti molar ratio on physical and sensing properties. Sens. Actuators B Chem. 150(2), 631–640 (2010)

    CAS  Google Scholar 

  39. A.A. Ansari, M.A.M. Khan, M. Naziruddin Khan, S.A. Alrokayan, M. Alhoshan, M.S. Alsalhi, Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film. J. Semicond. 32(4), 043001 (2011)

    Google Scholar 

  40. V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, A.S. Mokrushin, V.A. Nikolaev, N.T. Kuznetsov, Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Commun. 28(2), 164–166 (2018)

    CAS  Google Scholar 

  41. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3(5V), 1–7 (2013)

    Google Scholar 

  42. C. Wang, Effect of different surfactants on humidity sensing preperties of CeO2 nanobelts thin film prepared by hydrothermal method. Int. J. Appl. Ceram. Technol. 12(S1), 142–148 (2015)

    Google Scholar 

  43. B.C. Yadav, M. Singh, Morphological and humidity sensing investigations on niobium, neodymium, and lanthanum oxides. IEEE Sens. J. 10(11), 1759–1766 (2010)

    CAS  Google Scholar 

  44. N. Izu, W. Shin, I. Matsubara, The effect of the particles size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sens. Actuators B 94, 222–227 (2003)

    CAS  Google Scholar 

  45. J. Wang, X. Wang, X. Wang, Study on dielectric properties of humidity sensing nanometer materials. Sens. Actuators 108, 445–449 (2005)

    CAS  Google Scholar 

  46. H.A. Gatea, I. Naji, A. Abulameer, Humidity sensing properties of ferroelectric compound Ba0.7Sr0.3TiO3 thin films grown by pulsed laser deposition. Int. J. Thin Film Sci. Technol. 9(2), 143–150 (2020)

    Google Scholar 

  47. C. Wang, Effects of different surfactants on humidity sensing properties of CeO2 nanobelts thin film prepared by hydrothermal method. Int. Appl. Ceram. Technol. 12, E142–E148 (2015)

    CAS  Google Scholar 

  48. R. Suresh, V. Ponnuswamy, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation. Appl. Surf. Sci. 273, 457–464 (2013)

    CAS  Google Scholar 

  49. X.Q. Fu, C. Wang, H.C. Yu, Y.G. Wang, Fast humidity sensors based on CeO2 nanowires. Nanptechnology 18, 145503 (2007)

    Google Scholar 

  50. V.R. Khadse Sharada, Humidity-sensing studied of cerium oxide nanoparticles synthesis by non-isothermal precipitation. Sens. Actuators 14 (2014)

  51. C. Wang, A. Zhang, H. Reeza, Effects of surfactants on the performance of CeO2 humidity senor. Math. Propel. Eng. 2014, 6 (2014)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank all persons who involved in contribution, support, and encouragement in carrying out this work.

Funding

No funding support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed A. Gatea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatea, H.A. The role of substrate temperature on the performance of humidity sensors manufactured from cerium oxide thin films. J Mater Sci: Mater Electron 31, 22119–22130 (2020). https://doi.org/10.1007/s10854-020-04714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04714-8

Navigation