Skip to main content
Log in

Investigation on optical, laser damage threshold and non linear optical behavior of creatininium p-toluenesulfonate crystal for electro-optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic proton transferred nonlinear crystal of Creatininium p-Toluenesulfonate (CPT) has crystallized in with the help of typical solvent evaporation method. The crystal system of grown CPT crystal is orthorhombic with noncentrosymmetric space group P212121 and its crystalline perfection of grown CPT crystals was identified by HRXRD. Functional groups of the grown CPT crystal were identified by FTIR. The optical transmittance of grown CPT crystal starts from the lower visible region to IR region. The surface damage of grown CPT crystal induced by laser was studied and their threshold value was calculated. The emission region of the grown CPT crystals is in yellow wavelength region. The mechanical strength of CPT crystals resides to soft material category. The Second order nonlinearity was studied and compared with standard KDP. The Differential scanning calorimetric (DSC) confirms grown CPT crystal is thermally stable upto 190 ºC and the result confirm that the crystal has good thermal stability and it is suggested for electro-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Sivasubramani, C. Anil Kumar, M. Venkatesh, A. Raja, G. Vinitha, M.S. Pandian, P. Ramasamy, Cryst. Growth Des. 19, 6873–6892 (2019)

    Google Scholar 

  2. J. Mojca, P. Uros, A. Andreja, Z. Aleksander, Appl. Sci. 9, 882 (2019)

    Google Scholar 

  3. P. Karuppasamya, T. Kamalesha, M.S. Pandian, P. Ramasamy, S. Verma, J. Cryst. Growth 518, 59–72 (2019)

    Google Scholar 

  4. T. Pal, T. Kar, G. Bocelli, L. Rigi, Cryst. Growth Des. 3, 13–16 (2003)

    CAS  Google Scholar 

  5. B.L. Shivachev, K. Kossev, L.T. Dimowa, G. Yankov, T. Petrov, R.P. Nikolova, N. Petrova, J. Cryst. Growth 376, 41–46 (2013)

    CAS  Google Scholar 

  6. M. Suresh, S. Asath Bahadur, S. Athimoolam, J. Mater. Sci. Mater. Electron. 27, 4578–4589 (2016)

    CAS  Google Scholar 

  7. N. Elavarasu, S. Karuppusamy, S. Muralidharan, M. Anantharaja, R. Gopalakrishnan, Opt. Mater. 46, 141–148 (2015)

    CAS  Google Scholar 

  8. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248–2251 (1995)

    CAS  Google Scholar 

  9. V. Thayanithi, PPraveen Kumar, Mater. Res. Exp. 6, 046207 (2019)

    Google Scholar 

  10. H. Koshima, H. Miyamoto, I. Yagi, K. Uosaki, Cryst. Growth Des. 4, 807–811 (2001)

    Google Scholar 

  11. G. Vadivelan, M. Saravanabhavan, V. Murugesan, M. Sekar, Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 145, 461–466 (2015)

    CAS  Google Scholar 

  12. L. Wang, D.H. Wang, G.H. Zhang, D. Xu, W.X. Deng, J. Mol. Struct. 1108, 179–186 (2016)

    CAS  Google Scholar 

  13. S. Miyata (ed.), Nonlinear Optics Fundamentals, Materials and Devices (Elsevier, Aichi-Ken, Japan, 1991)

    Google Scholar 

  14. P. Prabu, R. Aarthi, C. Ramachandra, Raja, Opt. Quant. Electron. 51, 143 (2019)

    Google Scholar 

  15. S.A. Bahadur, S. Sivapragasama, R.S. Kannan, B. Sridhar, ActaCryst. E63, o1714–o1716 (2007)

    Google Scholar 

  16. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, CrystEngComm 15, 2157–2162 (2013)

    CAS  Google Scholar 

  17. S. Sindhusha, C.M. Padma, B. Gunasekaran, J. Mol. Struct. 1221, 128863 (2020)

    CAS  Google Scholar 

  18. M. Rajalakshmi, R. Indirajith, P. Ramasamy, R. Gopalakrishnan, Mol. Cryst. Liq. Cryst. 548, 126–141 (2011)

    CAS  Google Scholar 

  19. V. Thayanithi, P. Praveen Kumar, G. Chakkaravarthi, IUCrData, 1 × 161125 (2016)

  20. W. Kaminsky, J. Appl. Crystallogr. 38, 566–567 (2005)

    CAS  Google Scholar 

  21. W. Kaminsky, J. Appl. Cryst. 40, 382–385 (2007)

    CAS  Google Scholar 

  22. D. Sethupathi, M.S. Pandian, K.K. Maurya, P. Ramasamya, AIP Conference Proceedings, 1832, 100003 (2017)

  23. M.K. Dhatchaiyini, G. Rajasekar, A. Bhaskaran, J. Mater. Sci. 54, 9362–9371 (2019)

    CAS  Google Scholar 

  24. P. Urit Charoen-In, P. Ramasamy, Manyum, J. Cryst. Growth 362, 220–226 (2013)

    Google Scholar 

  25. H. Hongwei, C. Chuangtian, W. Xiaoyang, Z. Yong, W. Guiling, Z. Xin, W. Lirong, Y. Jiyong, J. Opt. Soc. Am. B 2011

  26. K. Arunkumar, S. Kalainathan, Appl. Phys. B 125, 58 (2019)

    Google Scholar 

  27. W. Kemp (1991) Ultraviolet and Visible Spectroscopy. Organic Spectroscopy. Palgrave, London

    Google Scholar 

  28. R. Tomovska, A. Agirre, A. Veloso, J.R. Leiza, Molecular Sciences and Chemical Engineering, 2014

  29. V. Thayanithi, B. Gunasekaran, P. Praveen Kumara, Optik Int. J. Light Electron Opt. 194, 163048 (2019)

    CAS  Google Scholar 

  30. N. Rani, N. Vijayan, B. Riscob, S.K. Jat, A. Krishna, S. Das, G. Bhagavannarayana, B. Rathi, M.A. Wahab, CrystEngComm. 15, 2127–2132 (2013)

    CAS  Google Scholar 

  31. M. Manivannan, S.A. Martin Britto Dhas, M. Balakrishnan, M. Jose, Appl. Phys. B 124, 166 (2018)

    Google Scholar 

  32. V. Sivasubramani, M. Jesby George, P. Senthil Pandian, P. Ramasamy, K.K. Pounraj, D. Maurya, Sajan, New J. Chem. 42, 4261–4277 (2018)

    CAS  Google Scholar 

  33. A. Senthil, P. Ramasamy, J. Cryst. Growth 401, 200–204 (2014)

    CAS  Google Scholar 

  34. V. Govindan, D.Joseph Daniel, H.J. Kim, K. Sankaranarayanan, Mater. Chem. Phys. 223, 183–189 (2019)

    CAS  Google Scholar 

  35. V. Govindan, D.Joseph Daniel, H.J. Kim, K. Sankaranarayanan, Dyes Pigm. 160, 848–852 (2019)

    CAS  Google Scholar 

  36. F.D. Brooks, Nuclear Instrum. Methods 162, 477–505 (1979)

    CAS  Google Scholar 

  37. J. Reichman: Handbook of Optical filters for Fluorescence Microscopy (Chroma Technology Corp., Brattleboro, 1998)

  38. S. Yamato, A. Yamaji, S. Kurosawa, M. Yoshino, Y. Ohashi, K. Kamada, Y. Yokota, A. Yoshikawa, Opt. Mater. 94, 58–63 (2019)

    CAS  Google Scholar 

  39. M. Parthasarathy, R. Gopala Krishnan, J. Cryst. Growth 372, 100–104 (2013)

    CAS  Google Scholar 

  40. H.S. Güder, E. Sahin, O. Sahin, H. Göçmez, C. Duran, H.A.Çetinkara, Acta Phys. Pol., A 120, 1026–1033 (2011)

    Google Scholar 

  41. V. Thayanithi, K. Rajesh, P. Praveen, Kumar, Mater. Res. Exp. 4, 086201 (2017)

    Google Scholar 

  42. K. Sangwal, M. Hordyjewicz, B. Surowska, J. Optoelectron. Adv. Mater. 4, 875–882 (2002)

    CAS  Google Scholar 

  43. E.M. Onitsch, Microscopia 2, 131 (1947)

    Google Scholar 

  44. M. Hanneman, Metall. Manch. 23, 135 (1941)

    Google Scholar 

  45. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)

    CAS  Google Scholar 

  46. E. Gyorgy, E. Axente, I.N. Mihailescu, D. Predoi, S. Ciuca, J. Neamtu, J. Mater. Sci. Mater. Med. 19, 1335–1339 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for carrying out the characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Praveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thayanithi, V., Praveen Kumar, P. Investigation on optical, laser damage threshold and non linear optical behavior of creatininium p-toluenesulfonate crystal for electro-optical applications. J Mater Sci: Mater Electron 31, 22098–22106 (2020). https://doi.org/10.1007/s10854-020-04712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04712-w

Navigation