Skip to main content

Theoretical and experimental studies on structural and optical properties of two quinoxaline 1,4dioxide derivatives

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermal vacuum evaporation technique is utilized to prepare two novel, uniform and compact thin films of quinoxaline 1,4dioxide derivatives: 6-Chloro-3-(hydrazinecarbonyl)-2-methylquinoxaline 1,4-dioxide (CHMQ) and 6-Chloro-2-methyl-3-(2-(4-nitrbenzylidene)hydrazine-1-carbonyl) quinoxaline 1,4-dioxide (CMNQ). The structures of thin films are characterized using Fourier transform infrared spectrophotometry, X-ray diffraction and atomic force microscopy techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, and bond angles) and the theoretical energy gap (HOMO–LUMO optical gap) values of the CHMQ and CMNQ compounds are also calculated. Crystalline structures, lattice parameters, Miller indices, diffraction angles and interplaner spacings for both compounds, in their powder form, are computed. Crystallite size, dislocation density and microstrain values are calculated for CHMQ and CMNQ thin films. Several optical constants like refractive index and absorption index of CHMQ and CMNQ thin films are calculated from the absolute values of their transmittance and reflectance spectra measured by a spectrophotometric method. The absorption parameters such as the type of electronic transition and the optical band gap values of the thin films are estimated and showed a good agreement with the corresponding theoretical energy gap values. The dispersion parameters (oscillator energy, dispersion energy, high frequency dielectric constant, lattice dielectric constant and ratio of free charge carriers’ concentration to its effective mass) of the thin films are estimated using single oscillator model in the non-absorbing region of each spectrum. The dielectric properties and the optical conductivity of the thin films are also determined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. H.S. Soliman, M. Ibrahim, M.A.M. El-Mansy, S.M. Atef, Opt. Mater. 72, 122 (2017)

    CAS  Google Scholar 

  2. Z. Barbieriková, D. Dvoranová, M. Bella, V. Milata, A. Czímerová, V. Brezová, Molecules 19, 12078 (2014)

    Google Scholar 

  3. G. Cheng, W. Sa, C. Cao, L. Guo, H. Hao, Z. Liu, X. Wang, Z. Yuan, Front. Pharmacol. 7, 64 (2016)

    Google Scholar 

  4. D.H. Soliman, Int. J. Org. Chem. 03, 65 (2013)

    Google Scholar 

  5. S. Said, F. El-Ablack, H. Elbeheiry, J. Braz. Chem. Soc. 29, 1–12 (2018)

    Google Scholar 

  6. P. Gąsiorski, M. Matusiewicz, E. Gondek, M. Pokladko-Kowar, P. Armatys, K. Wojtasik, A. Danel, T. Uchacz, A.V. Kityk, Dyes Pigments 151, 380 (2018)

    Google Scholar 

  7. H. Zhang, Y. Wu, W. Zhang, E. Li, C. Shen, H. Jiang, H. Tian, W.-H. Zhu, Chem. Sci. 9, 5919 (2018)

    CAS  Google Scholar 

  8. Z. Wu, H. Jiang, X. Wang, L. Yan, W. Zeng, X.-G. Wu, H. Zhuang, W. Zhu, R. Yang, Molecules 24, 54 (2018)

    Google Scholar 

  9. C. Costa, J. Farinhas, M.F.G. Velho, J. Avó, M. Matos, A.M. Galvão, A. Charas, New J. Chem. 43, 14246 (2019)

    CAS  Google Scholar 

  10. E. Lizarraga, C. Zabaleta, J.A. Palop, J. Therm. Anal. Calorim. 127, 1655 (2017)

    CAS  Google Scholar 

  11. K. Mahesh, S. Karpagam, K. Pandian, Top. Curr. Chem. 377, 12 (2019)

    CAS  Google Scholar 

  12. M.M. El-Nahass, M.A. Kamel, A.F. El-deeb, A.A. Atta, S.Y. Huthaily, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 79, 443 (2011)

    CAS  Google Scholar 

  13. N.A. El-Ghamaz, H.M. El-Mallah, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, A.M. Barakat, Solid State Sci. 22, 56 (2013)

    CAS  Google Scholar 

  14. A. Mahmood, J. Clust. Sci. 30, 1123 (2019)

    CAS  Google Scholar 

  15. S. Günes, D. Baran, G. Günbas, F. Özyurt, A. Fuchsbauer, N.S. Sariciftci, L. Toppare, Sol. Energy Mater. Sol. Cells 92, 1162 (2008)

    Google Scholar 

  16. J.Y. Lee, S.W. Heo, H. Choi, Y.J. Kwon, J.R. Haw, D.K. Moon, Sol. Energy Mater. Sol. Cells 93, 1932 (2009)

    CAS  Google Scholar 

  17. E.A. Gaml, J. Mater. Sci. Mater. Electron. 29, 12959 (2018)

    CAS  Google Scholar 

  18. H.M. Zeyada, N.A. El-Ghamaz, E.A. Gaml, Curr. Appl. Phys. 13, 1960 (2013)

    Google Scholar 

  19. J.C.S. Costa, R.J.S. Taveira, C.F.R.A.C. Lima, A. Mendes, L.M.N.B.F. Santos, Opt. Mater. 58, 51 (2016)

    CAS  Google Scholar 

  20. H.M. Zeyada, H.M. El-Mallah, T. Atwee, D.G. El-Damhogi, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 179, 120 (2017)

    CAS  Google Scholar 

  21. A.A. Al-Muntaser, M.M. El-Nahass, A.H. Oraby, M.S. Meikhail, H.M. Zeyada, Optik 167, 204 (2018)

    CAS  Google Scholar 

  22. M.M. El-Nahass, H.M. Zeyada, N.A. El-Ghamaz, El-Ghandour Shetiwy, Optik 171, 580 (2018)

    CAS  Google Scholar 

  23. M.M. El-Nahass, A.A.M. Farag, H.S. Soliman, Opt. Commun. 284, 2515 (2011)

    CAS  Google Scholar 

  24. H.A.M. Ali, M.M. El-Nahass, E.F.M. El-Zaidia, Opt. Laser Technol. 107, 402 (2018)

    CAS  Google Scholar 

  25. A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310 (2010)

    CAS  Google Scholar 

  26. M.M. El-Nahass, J. Mater. Sci. 27, 6597 (1992)

    CAS  Google Scholar 

  27. T. S. Moss, editor, Handbook on Semiconductors, Completely rev. and enl. edn (North-Holland, Amsterdam; 1992).

  28. N. Prabavathi, A. Nilufer, V. Krishnakumar, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 121, 483 (2014)

    CAS  Google Scholar 

  29. V. Arjunan, S. Mohan, J. Mol. Struct. 892, 289 (2008)

    CAS  Google Scholar 

  30. A.A.M. Farag, Opt. Laser Technol. 39, 728 (2007)

    CAS  Google Scholar 

  31. C.S. Chidan Kumar, C.Y. Panicker, H.-K. Fun, Y.S. Mary, B. Harikumar, S. Chandraju, C.K. Quah, C.W. Ooi, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 126, 208 (2014)

    CAS  Google Scholar 

  32. M.M. El-Nahass, M.A. Kamel, E.M. El-Menyawy, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 79, 618 (2011)

    CAS  Google Scholar 

  33. A. Raj, Y. Sheena Mary, C. Yohannan Panicker, H.T. Varghese, K. Raju, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 113, 28 (2013)

    CAS  Google Scholar 

  34. P.R. Anizelli, J.P.T. Baú, H.S. Nabeshima, M.F. da Costa, H. de Santana, D.A.M. Zaia, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 126, 184 (2014)

    CAS  Google Scholar 

  35. E. Lizarraga, D.M. Gil, G.A. Echeverría, O.E. Piro, C.A.N. Catalán, A. Ben-Altabef, Spectrochim. Acta A. Mol. Biomol 127, 74 (2014)

    CAS  Google Scholar 

  36. H.S. Soliman, K.M. Eid, H.A.M. Ali, M.A.M. El-Mansy, S.M. Atef, Spectrochim. Acta A. Mol. Biomol 105, 545 (2013)

    CAS  Google Scholar 

  37. M.A.M. El-Mansy, M.M. El-Nahass, Spectrochim. Acta A. Mol. Biomol 130, 568 (2014)

    CAS  Google Scholar 

  38. N.A. El-Ghamaz, M.A. Diab, A.A. El-Bindary, A.Z. El-Sonbati, S.G. Nozha, Spectrochim. Acta A. Mol. Biomol 143, 200 (2015)

    CAS  Google Scholar 

  39. R. Shirley, The CRYSFIRE System for Automatic Powder Indexing: User’s Manual (The Lattice Press, Guildford, 2000)

    Google Scholar 

  40. J. Laugier, B. Bochu, LMGP-Suite Suite of Programs for the Interpretation of X-ray Experiments, ENSP/Laboratoire des Materiaux et du Genie Physique, BP46.38042, Saint Martin d’Heres, France (2000).

  41. M.M. El-Nahass, A.A. Atta, H.E.A. El-Sayed, E.F.M. El-Zaidia, Appl. Surf. Sci. 254, 2458 (2008)

    CAS  Google Scholar 

  42. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, New York, 1978)

    Google Scholar 

  43. G.I. Stegeman, E.M. Wright, Opt. Quantum Electron. 22, 95 (1990)

    CAS  Google Scholar 

  44. H. Pan, X. Gao, Y. Zhang, P.N. Prasad, B. Reinhardt, R. Kannan, Chem. Mater. 7, 816 (1995)

    CAS  Google Scholar 

  45. L.T. Jin, X.Q. Wang, Q. Ren, N.N. Cai, J.W. Chen, T.B. Li, X.T. Liu, L.N. Wang, G.H. Zhang, L.Y. Zhu, D. Xu, J. Cryst. Growth 356, 10 (2012)

    CAS  Google Scholar 

  46. A. El-Denglawey, M.M. Makhlouf, M. Dongol, M.M. El-Nahass, J. Mater. Sci. Mater. Electron. 26, 5603 (2015)

    CAS  Google Scholar 

  47. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Google Scholar 

  48. H.M. Zeyada, N.A. El-Ghamaz, M.I. Youssif, E.A. Gaml, Opt. Mater. 69, 392 (2017)

    CAS  Google Scholar 

  49. A. T.M.AL-Thib and N. A.Khudhair, (n.d.).

  50. M. M and B. J. M. Rajkumar, in (Rome, Italy, 2015), p. 110045.

  51. V. Leyva, I. Corral, T. Schmierer, P. Gilch, L. González, Phys. Chem. Chem. Phys. 13, 4269 (2011)

    CAS  Google Scholar 

  52. W. Bludau, A. Onton, W. Heinke, J. Appl. Phys. 45, 1846 (1974)

    CAS  Google Scholar 

  53. Y.P. Varshni, Physica 34, 149 (1967)

    CAS  Google Scholar 

  54. J. Tauc, A. Menth, J. Non-Cryst, Solids 8–10, 569 (1972)

    Google Scholar 

  55. H.M. Zeyada, M.M. El-Nahass, I.S. Elashmawi, A.A. Habashi, J. Non-Cryst, Solids 358, 625 (2012)

    CAS  Google Scholar 

  56. J.-L. Bredas, Mater Horiz 1, 17 (2014)

    CAS  Google Scholar 

  57. K.S. Asha, A.C. Reber, N. Ahmed, R. Nath, S.N. Khanna, S. Mandal, J. Mater. Chem. C 5, 539 (2017)

    CAS  Google Scholar 

  58. A. Facchetti, Chem. Mater. 23, 733 (2011)

    CAS  Google Scholar 

  59. D.N. Congreve, J. Lee, N.J. Thompson, E. Hontz, S.R. Yost, P.D. Reusswig, M.E. Bahlke, S. Reineke, T. Van Voorhis, M.A. Baldo, Science 340, 334 (2013)

    CAS  Google Scholar 

  60. N.A. El-Ghamaz, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, H.A. Seyam, Solid State Sci. 19, 19 (2013)

    CAS  Google Scholar 

  61. M.M. El-Nahass, M.H. Ali, A. El-Denglawey, Trans. Nonferrous Met. Soc. China 22, 3003 (2012)

    CAS  Google Scholar 

  62. F. Urbach, Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  63. H. Mehdizadeh-Rad, J. Singh, ChemPhysChem 20, 2712 (2019)

    CAS  Google Scholar 

  64. S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Phys. Rev. Appl. 2, 034007 (2014)

    Google Scholar 

  65. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 136, 11610 (2014)

    CAS  Google Scholar 

  66. S.M. Wasim, G. Marín, R. Marquez, C. Rincón, J. Appl. Phys. 127, 035703 (2020)

    CAS  Google Scholar 

  67. J.-S. Ni, H.-C. Hsieh, C.-A. Chen, Y.-S. Wen, W.-T. Wu, Y.-C. Shih, K.-F. Lin, L. Wang, J.T. Lin, ChemSusChem 9, 3139 (2016)

    CAS  Google Scholar 

  68. M. Li, Z. Wang, M. Liang, L. Liu, X. Wang, Z. Sun, S. Xue, J. Phys. Chem. C 122, 24014 (2018)

    CAS  Google Scholar 

  69. E.D. Palik, G. Ghosh (eds.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

  70. C. Bathula, C.E. Song, W.H. Lee, J. Lee, S. Badgujar, R. Koti, I.-N. Kang, W.S. Shin, T. Ahn, J.-C. Lee, S.-J. Moon, S.K. Lee, Thin Solid Films 537, 231 (2013)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of prof. Samy B. Said group in Damietta University, Department of Chemistry for providing the organic compounds used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Shabaan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghamaz, N.A., Moqbel, M.S. & El-Shabaan, M.M. Theoretical and experimental studies on structural and optical properties of two quinoxaline 1,4dioxide derivatives. J Mater Sci: Mater Electron 31, 22012–22027 (2020). https://doi.org/10.1007/s10854-020-04703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04703-x