Skip to main content
Log in

Effects of the calcined temperature of ingredients on the growth, structure and electrical properties of (K0.5Na0.5)NbO3-based single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free K0.5Na0.5NbO3 (KNN)-based single crystals have been prepared by a seed-free, solid-state crystal growth method. The effects of the calcined temperature of ingredients on the growth, structure and electrical properties of the single crystals are systematically studied. Results show that increasing the calcined temperature is beneficial to the synthesis of pure orthorhombic-phase powder, but it hardly affects the phase structure of the single crystals. When the calcined temperature is in the range of 700–850 °C, it is more useful for obtaining larger KNN-based crystals. What is more, the width of the domains in the crystals first decreases and then increases with rising of the calcined temperature, which is in well agreement with the changing regularity of the structure and electrical properties. The single crystals with good electrical properties can be obtained in a wide calcined-temperature range of 700–850 °C: the piezoelectric constant d33 of 155–209 pC N−1, dielectric constant ε of 291–389, dielectric loss tanδ of 2.0–3.4%, and remnant polarization Pr of 25.4–49.1 μC cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, J. Am. Ceram. Soc. 93, 941 (2010)

    Article  CAS  Google Scholar 

  2. Y. Liu, G. Xu, J. Liu, D. Yang, X. Chen, J. Alloys Compd. 603, 95 (2014)

    Article  CAS  Google Scholar 

  3. W. Yao, J. Zhang, X. Wang, C. Zhou, X. Sun, J. Zhan, J. Eur. Ceram. Soc. 39, 287 (2019)

    Article  CAS  Google Scholar 

  4. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D. Wang, S. Taylor, A. Genovese, Energy Environ Sci. 9, 3495 (2016)

    Article  CAS  Google Scholar 

  5. Y. Qin, J. Zhang, Y. Tan, W. Yao, C. Wang, S. Zhang, J. Eur. Ceram. Soc. 34, 4177 (2014)

    Article  CAS  Google Scholar 

  6. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81 (2004)

    Article  CAS  Google Scholar 

  7. T.R. Shrout, S. Zhang, J. Electroceram. 19, 113 (2007)

    Article  Google Scholar 

  8. F. Li, D. Xiao, J. Wu, Z. Wang, C. Liu, J. Zhu, Ceram. Int. 40, 14601 (2014)

    Article  CAS  Google Scholar 

  9. Y. Hu, Q. Xie, Y. Wu, X. Zhao, Y. Tang, F. Wang, Z. Duan, D. Lin, H. Luo, R. Liang, J. Eur. Ceram. Soc. 40, 2917 (2020)

    Article  CAS  Google Scholar 

  10. T. Yan, X. Sun, J. Deng, S. Liu, F. Han, X. Liu, L. Fang, D. Lin, B. Peng, L. Liu, Solid State Commun. 264, 1 (2017)

    Article  CAS  Google Scholar 

  11. Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, Appl. Phys. Lett. 108, 172906 (2016)

    Article  Google Scholar 

  12. Z. Fan, S. Zhang, X. Tan, J. Eur. Ceram. Soc. 40, 1217 (2020)

    Article  CAS  Google Scholar 

  13. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv Mater. 28, 8519 (2016)

    Article  CAS  Google Scholar 

  14. M. Jiang, J. Zhang, G. Rao, D. Li, C.A. Randall, T. Li, B. Peng, L. Li, Z. Gu, X. Liu, H. Huang, J. Mater Chem C. 7, 14845 (2019)

    Article  CAS  Google Scholar 

  15. S. Wang, D.J. Rutstrom, L. Stand, M. Koschan, C.L. Melcher, Y. Wu, IEEE Trans Nucl Sci. 67, 876 (2020)

    Article  CAS  Google Scholar 

  16. A.V. Lebedev, S.A. Avanesov, V.A. Klimenko, L.V. Vasileva, A. Hammoud, Opt Mater. 103, 109901 (2020)

    Article  CAS  Google Scholar 

  17. M. Bah, N. Alyabyeva, R. Retoux, F. Giovannelli, M. Zaghrioui, A. Ruyter, F. Delorme, I. RSC Adv. 6, 49060 (2016)

    Article  CAS  Google Scholar 

  18. A. Bencan, E. Tchernychova, M. Godec, J. Fisher, M. Kosec, Microsc Microanal. 15, 435 (2009)

    Article  CAS  Google Scholar 

  19. I. Fujii, S. Ueno, S. Wada, J. Eur. Ceram. Soc. 40, 2970 (2020)

    Article  CAS  Google Scholar 

  20. J. Song, C. Hao, Y. Yan, J. Zhang, L. Li, M. Jiang, Mater. Lett. 204, 19 (2017)

    Article  CAS  Google Scholar 

  21. J. Zhang, M. Jiang, G. Cheng, Z. Gu, X. Liu, J. Song, L. Li, Y. Du, Ferroelectrics 502, 210 (2016)

    Article  CAS  Google Scholar 

  22. M. Jiang, C.A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, G. Cheng, X. Liu, J. Zhang, Y. Li, G. Brennecka, J. Am. Ceram. Soc. 98, 2988 (2015)

    Article  CAS  Google Scholar 

  23. Z. Cen, Y. Zhen, W. Feng, P. Zhao, L. Chen, X. Wang, L. Li, J. Eur. Ceram. Soc. 38, 3136 (2018)

    Article  CAS  Google Scholar 

  24. L. Zhang, Y. Hang, D. Sun, X. Qian, S. Li, S. Yin, J. Synth. Crystals. 32, 24 (2003)

    Google Scholar 

  25. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  26. P. Scherrer, Nachr. Ges. Wiss. Göttingen. 26, 98 (1918)

    Google Scholar 

  27. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  28. C. Hao, Z. Gu, G. Cheng, L. Li, J. Zhang, J. Song, Y. Yan, M. Jiang, J. Mater. Sci. Mater. EL. 28, 18357 (2017)

    Article  CAS  Google Scholar 

  29. Y.-J. Dai, X.-W. Zhang, K.-P. Chen, Appl. Phys. Lett. 94, 042905 (2009)

    Article  Google Scholar 

  30. X. Lv, X.-X. Zhang, J. Wu, J Mater Chem A. 8, 10026 (2020)

    Article  CAS  Google Scholar 

  31. J. Zhang, Y. Qin, Y. Gao, W. Yao, M. Zhao, J. Am. Ceram. Soc. 97, 759 (2014)

    Article  CAS  Google Scholar 

  32. B. Li, M.-S. Cao, J. Liu, D.-W. Wang, J. Am. Ceram. Soc. 99, 2316 (2016)

    Article  CAS  Google Scholar 

  33. J. Zhang, Y. Gao, Y. Qin, W. Yao, X. Tian, J. Appl. Phys. 116, 104106 (2014)

    Article  Google Scholar 

  34. C. Zhou, J. Zhang, W. Yao, X. Wang, D. Liu, X. Sun, J. Appl. Phys. 124, 164101 (2018)

    Article  Google Scholar 

  35. Y. Qin, J. Zhang, Y. Gao, Y. Tan, C. Wang, J. Appl. Phys. 113, 204107 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51562004, 61571142), Guangxi Natural Science Outstanding Youth Foundation (2016GXNSFFA380007), Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, Project No. 171004-Z) and Program for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Jiang, M., Li, W. et al. Effects of the calcined temperature of ingredients on the growth, structure and electrical properties of (K0.5Na0.5)NbO3-based single crystals. J Mater Sci: Mater Electron 31, 21971–21980 (2020). https://doi.org/10.1007/s10854-020-04700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04700-0

Navigation