Skip to main content
Log in

Large magnetocaloric effect near room temperature in \({\mathbf{L}\mathbf{a}}_{0.67}{(\mathbf{S}\mathbf{r},\mathbf{K}/\mathbf{P}\mathbf{b})}_{0.33}{\mathbf{M}\mathbf{n}\mathbf{O}}_{3}\) manganite nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The magnetic and magnetocaloric properties of \({\mathrm{La}}_{0.67}{\mathrm{Sr}}_{0.33}{\mathrm{MnO}}_{3}\) (\(\mathrm{LSMO}\)), \({\mathrm{La}}_{0.67}{\mathrm{Sr}}_{0.23}{{\mathrm{K}}_{0.10}\mathrm{MnO}}_{3}\)(LSKMO), and \({\mathrm{La}}_{0.67}{\mathrm{Sr}}_{0.23}{{\mathrm{Pb}}_{0.10}\mathrm{MnO}}_{3}\) (LSPMO) manganite nanomaterials were investigated. The superparamagnetic behavior of these nanomaterials was analyzed using the log-normal weighted Langevin function. Large change in magnetic entropy (\({\Delta S}_{\mathrm{M}}\)) and relative cooling power (RCP) were observed near the Curie temperature, \(T_{{\text{C}}}\), for all samples. The maximum change in entropy (\(-{\Delta S}_{\mathrm{M}}^{\mathrm{max}}\)) is found to be 5.0, 5.3, and 6.2 \({\mathrm{J kg}}^{-1} {\mathrm{K}}^{-1}\) under 7 T magnetic field for \(\mathrm{LSMO}\), LSKMO, and LSPMO samples, respectively, whereas the corresponding RCP values are 400, 440, and 325 \({\mathrm{J kg}}^{-1}\). The isothermal magnetization data were analyzed thoroughly, using Arrott plots according to Banerjee’s criterion. Moreover, the critical exponents (\(\beta\), \(\gamma\) and \(\delta )\) were calculated using the modified Arrott plot. The Widom scaling relation was studied to confirm the dependability of these critical exponents. The magnetocaloric effect was also analyzed by considering the Landau theory. Our findings indicate that these samples can have promising applications for magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.K. Siwach, H.K. Singh, O.N. Srivastava, Low field magnetotransport in manganites. J. Phys.: Condens. Matter 20, 273201–273244 (2008)

    CAS  Google Scholar 

  2. R. Yadav, A. Anshul, V. Shelke, Wide range magnetoresistance and high temperature coefficient of resistance La0.7Sr0.3–xAgxMnO3 in system. J. Mater. Sci. Mater. Electron. 22, 1173–1180 (2011)

    CAS  Google Scholar 

  3. Ah. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1–xCrxO3 (0.15, 0.20 and 0.25) manganite oxide. Dalton Trans. 44, 5620–5627 (2015)

    CAS  Google Scholar 

  4. R. Skini, M. Khlifi, E.K. Hlil, Efficient composite magnetocaloric material with a tunable temperature transition in K-deficient manganites. RSC Adv. 6, 34271–34279 (2016)

    CAS  Google Scholar 

  5. S. Zouari, M. Ellouze, A. Nasri, W. Cherif, E.K. Hlil, F. Elhalouani, Morphology, structural, magnetic, and magnetocaloric properties of Pr0.7Cs0.3MnO3 nanopowder prepared by mechanical ball milling method. J. Supercond. Nov. Magn. 27, 555 (2014)

    CAS  Google Scholar 

  6. S.N. Kale, S. Arora, K.R. Bhayani, K.M. Paknikar, M. Jani, U.V. Wagh, S.D. Kulkarni, S.B. Ogale, Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomedicine 2, 217–221 (2006)

    CAS  Google Scholar 

  7. N.D. Thorat, V.M. Khot, A.B. Salunkhe, R.S. Ningthoujam, S.H. Pawar, Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: Studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Colloids Surf. B 104, 40–47 (2013)

    CAS  Google Scholar 

  8. D.H. Manh, P.T. Phong, P.H. Nam, D.K. Tung, N.X. Phuc, In-Ja Lee, Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Phys. B 444, 94–102 (2014)

    CAS  Google Scholar 

  9. K.R. Bhayani, S.N. Kale, S. Arora, R. Rajagopal, H. Mamgain, R. Kaul-Ghanekar, D.C. Kundaliya, S.D. Kulkarni, R. Pasricha, S.D. Dhole, S.B. Ogale, K.M. Paknikar, Protein and polymer immobilized La0.7Sr0.3MnO3 nanoparticles for possible biomedical applications. Nanotechnology 18, 345101–345108 (2007)

    Google Scholar 

  10. M.H. Phan, M.B. Morales, N.S. Bingham, H. Srikanth, C.L. Zhang, S.W. Cheong, Phase coexistence and magnetocaloric effect in La5/8–yPryCa3/8MnO3 (y = 0.275). Phys. Rev. B 81, 094413–094419 (2010)

    Google Scholar 

  11. M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    CAS  Google Scholar 

  12. W. Tang, W. Lu, X. Luo, B. Wang, X. Zhu, W. Song, Z. Yang, Y. Sun, Particle size effects on La0.7Sr0.3MnO3: size-induced changes of magnetic phase transition order and magnetocaloric study. J. Magn. Magn. Mater. 322, 2360–2368 (2010)

    CAS  Google Scholar 

  13. P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2–xMnO3 (0≤ x ≤ 0.2). J. Mater. Sci. Mater. Electron. 24, 2292–2301 (2013)

    CAS  Google Scholar 

  14. A. Ezaami, N. Ouled Nasser, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid-state process. J. Mater. Sci. Mater. Electron. 28, 3648–3658 (2017)

    CAS  Google Scholar 

  15. M.H. Ehsani, P. Kameli, M.E. Ghazi, F.S. Razavi, M. Taheri, Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles. J. Appl. Phys. 114, 223907–223910 (2013)

    Google Scholar 

  16. P. Zhang, P. Lampen, T.L. Phan, S.C. Yu, T.D. Thanh, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1–xCaxMnO3 (x = 0.2–0.4). J. Magn. Magn. Mater. 348, 146–153 (2013)

    CAS  Google Scholar 

  17. K.Y. Pan, S.A. Halim, K.P. Lim, W.M.W.Y. Daud, S.K. Chen, M. Navasery, Microstructure, electrical and magnetic properties of polycrystalline La0.85K0.15MnO3 manganites prepared by different synthesis routes. J. Mater. Sci. 24, 1869–1874 (2013)

    CAS  Google Scholar 

  18. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature. J. Magn. Magn. Mater. 323, 2214–2218 (2011)

    CAS  Google Scholar 

  19. P.T. Phong, L.T. Duy, L.V. Bau, N.V. Dang, D.H. Manh, I.-J. Lee, Magnetic and magnetocaloric properties of selected Pb-doped manganites. J. Electroceram. 36, 58–64 (2016)

    CAS  Google Scholar 

  20. S. Biswas, S. Keshri, Room temperature magnetoimpedance of La0.67Sr0.33–xPbxMnO3 (x = 0–0.33) manganites. Phase Transition 92, 172–183 (2019)

    CAS  Google Scholar 

  21. M. Jeddi, H. Gharsallah, M. Bekri, E. Dhahri, E.K. Hlil, Structural, magnetic, critical behavior and phenomenological investigation of magnetocaloric properties of La0.6Ca0.4–xSrxMnO3 perovskite. J. Mater. Sci. Mater. Electron. 30, 14430–14444 (2019)

    CAS  Google Scholar 

  22. W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3–xKxMnO3 perovskite manganites. J. Alloys Compd. 470, 42–46 (2009)

    Google Scholar 

  23. A. Bhat, A. Modi, N.K. Gaur, The effect of sintering temperature on the magneto-transport properties of Pr0.67Sr0.33–xAgxMnO3 (0 ≤ x ≤ 0.1) manganites. J. Mater. Sci. Mater. Electron. 26, 6444–6449 (2015)

    CAS  Google Scholar 

  24. S. Keshri, S. Biswas, P. Wiśniewski, Studies on characteristic properties of superparamagnetic La0.67Sr0.33–xKxMnO3 nanoparticles. J. Alloys Compd. 509, 5796–5803 (2016)

    Google Scholar 

  25. K. Das, R. Roy Chowdhury, S. Midda, P. Sen, I. Das, Magnetocaloric effect study of Pr0.67Ca0.33MnO3 – La0.67Sr0.33MnO3 nanocomposite. J. Magn. Magn. Mater. 449, 304–307 (2004)

    Google Scholar 

  26. S. Vadnala, S. Asthana, Magnetocaloric effect and critical field analysis in Eu substituted La0.7–xEuxSr0.3MnO3 (x = 0.0, 0.1, 0.2, 0.3) manganites. J. Magn. Magn. Mater. 446, 68–79 (2018)

    CAS  Google Scholar 

  27. N. Dhahri, M. Abassi, E.K. Hlil, J. Dhahri, Magnetocaloric effect in perovskite manganite La0.67–xEuxSr0.33MnO3. J. Supercond. Nov. Magn. 28, 2795–2799 (2015)

    CAS  Google Scholar 

  28. S. Das, T.K. Dey, Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method. J. Phys.: Condens. Matter 18, 7629–7641 (2006)

    CAS  Google Scholar 

  29. A. Sakka, R. M’nassri, S. Tarhouni, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, Impact of synthesis routes on normal and inverse magnetocaloric effects and critical behaviour in the charge-ordered Pr0.5Sr0.5MnO3 manganite. Eur. Phys. J. Plus 134, 1–17 (2019)

    CAS  Google Scholar 

  30. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). J. Phys. Rev. Lett. 78, 4494–4497 (1997)

    CAS  Google Scholar 

  31. V.K. Pecharsky, K.A. Gschneidner Jr., Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). J. Magn. Magn. Mater. 167, L179–L184 (1997)

    CAS  Google Scholar 

  32. A.L. Kozlovskiy, I.E. Kenzhina, M.V. Zdorovets, M. Saiymova, D.I. Tishkevich, S.V. Trukhanov, A.V. Trukhanov, Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr). Ceram. Int. 45, 17236–17242 (2019)

    CAS  Google Scholar 

  33. M.V. Zdorovets, A. Arbuz, A.L. Kozlovskiy, Synthesis of LiBaZrOx ceramics with a core–shell structure. Ceram. Int. 46, 6217–6221 (2020)

    CAS  Google Scholar 

  34. O. Karaagac, H. Kockar, Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles. Supercond. Nov. Magn. 25, 2777–2781 (2012)

    CAS  Google Scholar 

  35. F. Ozel, H. Kockar, O. Karaagac, Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J. Supercond. Nov. Magn. 28, 823–829 (2015)

    CAS  Google Scholar 

  36. S. Keshri, S.S. Rajput, Effect of BTO addition on the structural and magnetoresistive properties of LSMO. Phase Transitions 87(2), 136–147 (2014)

    CAS  Google Scholar 

  37. R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, C.N.R. Rao, Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys. Rev. B 53, 3348–3358 (1996)

    CAS  Google Scholar 

  38. M. Ben Rejeb, C. Ben osman, Y. Regaieg, A. Marzouki-Ajmi, W. Cheikhrouhou-Koubaa, S. Ammar, A. Cheikhrouhou, T. Mhiri, A comparative study of La0.65Ca0.2(Na0.5K0.5)0.15MnO3 compound synthesized by solid-state and sol-gel process. J. Alloys Compd. 695, 2597–2604 (2017)

    CAS  Google Scholar 

  39. F. Ayadi, Y. Regaieg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3–xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. J. Magn. Magn. Mater. 381, 215–219 (2015)

    CAS  Google Scholar 

  40. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and the metal-insulator transition temperature in manganese oxide perovskites. Phys. Rev. B 58, 2426 (1998)

    CAS  Google Scholar 

  41. F. Fonseca, G. Goya, R. Jardim, R. Muccillo, N. Carreno, E. Longo, E. Leite, Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406–104411 (2002)

    Google Scholar 

  42. G. Goya, T. Berquo, F. Fonseca, M. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    CAS  Google Scholar 

  43. A. Rostamnejadi, M. Venkatesan, H. Salamati, K. Ackland, H. Gholizadeh, P. Kameli, J.M.D. Coey, Magnetic properties, exchange bias, and memory effects in core–shell superparamagnetic nanoparticles of La0.67Sr0.33MnO3. J. Appl. Phys. 121, 173902–173909 (2017)

    Google Scholar 

  44. A. Arrott, Criterion for ferromagnetism from observations of magnetic isotherias. Phys. Rev. 108, 1394–1396 (1957)

    CAS  Google Scholar 

  45. S.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Google Scholar 

  46. T. Tang, K.M. Gu, Q.Q. Cao, D.H. Wang, S.Y. Zang, Y.W. Du, Magnetocaloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110–114 (2000)

    CAS  Google Scholar 

  47. Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetocaloric effect in perovskite manganites La0.7–xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J. Appl. Phys. 90, 5689–5691 (2001)

    CAS  Google Scholar 

  48. P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Sheong, P.E. Schiffer, A.P. Ramirez, Simultaneous structural, magnetic, and electronic transitions in La1–xCaxMnO3 with x = 0.25 and 0.50. Phys. Rev. Lett. 75, 4488–4491 (1995)

    CAS  Google Scholar 

  49. W. Chen, W. Zhong, D.I. Hou, R.W. Gao, W.C. Feng, M.G. Zhu, Y.W. Du, Preparation and magnetocaloric effect of self-doped La0.8−xNa0.2xMnO3+δ (= vacancies) polycrystal. J. Phys. Condens. Matter 14(2002), 11889–11891 (1896)

    Google Scholar 

  50. Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78, 1142–1145 (1997)

    CAS  Google Scholar 

  51. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites. Phys. B 404, 285–288 (2009)

    CAS  Google Scholar 

  52. M. Ben Rejeb, H. Omrani, A. Marzouki, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, T. Mhiri, Investigation on critical behavior for La0.65Ca0.2K0.075Na0.075MnO3 near room temperature. J. Supercond. Nov. Magn. 29(11), 2917–2923 (2016)

    CAS  Google Scholar 

  53. H. Yanchun, T. Guo, X. Wang, Y. Cui, W. Li, X. Zhao, H. Liu, Magnetocaloric properties of the A-site co-doping double-perovskite of Sr2FeMoO3. J. Magn. Magn. Mater. 466, 133–137 (2018)

    Google Scholar 

  54. A. Ezaami, N. Ouled Nasser, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Phenomenological model of the magnetocaloric effect and its correlation with critical behavior near room temperature in La0.7Ca0.2Sr0.1MnO3 manganite. J. Mater. Sci. Mater. Electron. 28, 10056–10060 (2017)

    CAS  Google Scholar 

  55. A. Belkahla, K. Cherif, J. Dhahri, E.K. Hlil, Large magnetic entropy change and magnetic field dependence of critical behavior studies in La0.7Bi0.05Sr0.15Ca0.1Mn0.95In0.05O3 compound. J. Alloys Compd. 715, 266–274 (2017)

    CAS  Google Scholar 

  56. A. Krichene, W. Boujelben, Enhancement of the magnetocaloric effect in composites based on La0.4Re0.1Ca0.5MnO3 (Re = Dy, Gd, and Eu and ) polycrystalline manganites. J. Supercond. Nov. Magn. 31, 577–582 (2018)

    CAS  Google Scholar 

  57. X.B. Liu, D.H. Ryan, Z. Altounian, The order of magnetic phase transition in La(Fe1–xCox)11.4Si1.6 compounds. J. Magn. Magn. Mater. 270, 305–311 (2004)

    CAS  Google Scholar 

  58. M. Foldeaki, R. Chahine, T.K. Bose, Magnetic measurements: a powerful tool in magnetic refrigerator design. J. Appl. Phys. 77, 3528–3537 (1995)

    Google Scholar 

  59. R. M’nassri, A. Cheikhrouhou, Magnetocaloric effect in LaFe10.7Co0.8Si1.5 compound near room temperature. J. Supercond. Nov. Magn. 27, 1059–1064 (2014)

    Google Scholar 

  60. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512–222515 (2006)

    Google Scholar 

  61. H.E. Stanley, Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999)

    CAS  Google Scholar 

  62. H.E. Stanley, 12.4: Introduction to Phase Transition and Critical Phenomena (Oxford University Press, Oxford, 1971), p. 200

    Google Scholar 

  63. H.S. Shin, J.E. Lee, Y.S. Nam, H.L. Ju, C.W. Park, First-order-like magnetic transition in manganite oxide La0.7Ca0.3MnO3. Solid State Commun. 118, 377–380 (2001)

    CAS  Google Scholar 

  64. B. Widom, Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892–3897 (1965)

    CAS  Google Scholar 

Download references

Acknowledgements

We do acknowledge the XRD support of Central Instrumentation Facility of Birla Institute of Technology, Mesra, Ranchi, India. The magnetization measurement was performed at UGC– DAE Consortium for Scientific Research, Indore Centre, India; Dr. R. C. Choudhury is acknowledged for supporting this work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Keshri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Keshri, S. Large magnetocaloric effect near room temperature in \({\mathbf{L}\mathbf{a}}_{0.67}{(\mathbf{S}\mathbf{r},\mathbf{K}/\mathbf{P}\mathbf{b})}_{0.33}{\mathbf{M}\mathbf{n}\mathbf{O}}_{3}\) manganite nanomaterials. J Mater Sci: Mater Electron 31, 21896–21912 (2020). https://doi.org/10.1007/s10854-020-04694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04694-9

Navigation