Skip to main content
Log in

Carbon-modified kaolin clay using sugar dehydration technique for the electrochemical detection of quercetin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report a simple strategy to modify kaolin clay with carbon as an electrocatalyst for quercetin detection. The modified clay composite was characterized using X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to analyze the electron transfer process of the carbon-modified electrode. The electro-oxidation behavior of quercetin was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV experiments displayed that the electro-oxidation behavior of C-kaolin composite was significantly enhanced than unmodified kaolin clay. Under the optimized conditions, the prepared sensor showed increasing linear concentration in the range from 0.12 to 182.1 µM with the detection limit (LoD) of 0.057 µM (S/N = 3). The proposed sensor was applied for the detection of QCN in apple juice and the recovery percentage was found to be 93 to 97%. Thus, the proposed sensor is simple, cost-effective, and can be utilized for several analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Tungmunnithum, A. Thongboonyou, A. Pholboon, A. Yangsabai, Medicines 5, 93 (2018)

    CAS  Google Scholar 

  2. S. Kumar, A.K. Pandey, Sci. World J. 2013, 1 (2013)

    Google Scholar 

  3. I. Erlund, Nutr. Res. 24, 851 (2004)

    CAS  Google Scholar 

  4. R. Chen, J. Lin, J. Hong, D. Han, A.D. Zhang, R. Lan, L. Fu, Z. Wu, J. Lin, W. Zhang, Z. Wang, W. Chen, C. Chen, H. Zhang, Toxicol. Rep. 1, 450 (2014)

    CAS  Google Scholar 

  5. D. Saritha, A.R. Koirala, M. Venu, G.D. Reddy, A.V.B. Reddy, B. Sitaram, G. Madhavi, K. Aruna, Electrochim. Acta 313, 523 (2019)

    CAS  Google Scholar 

  6. F.J.V. Gomez, M. Espino, M. de los Angeles, J. Fernandez, Raba, M.F. Silva, Anal. Chim. Acta 936, 91 (2016)

    CAS  Google Scholar 

  7. Y. Chen, W. Huang, K. Chen, T. Zhang, Y. Wang, J. Wang, Sens. Actuators B 290, 434 (2019)

    CAS  Google Scholar 

  8. S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Food Chem. 300, 125189 (2019)

    CAS  Google Scholar 

  9. X. Kan, T. Zhang, M. Zhong, X. Lu, Biosens. Bioelectron. 77, 638 (2016)

    CAS  Google Scholar 

  10. A. Şenocak, B. Köksoy, E. Demirbaş, T. Basova, M. Durmuş, Sens. Actuators B 267, 165 (2018)

    Google Scholar 

  11. X. Niu, X. Li, W. Chen, X. Li, W. Weng, C. Yin, R. Dong, W. Sun, G. Li, Mater. Sci. Eng. C 89, 230 (2018)

    CAS  Google Scholar 

  12. V. Yadav, S. Roy, P. Singh, Z. Khan, A. Jaiswal, Small 15, 1803706 (2019)

    Google Scholar 

  13. M.E. Awad, A. López-Galindo, M. Setti, M.M. El-Rahmany, C.V. Iborra, Int. J. Pharm. 533, 34 (2017)

    CAS  Google Scholar 

  14. H.G. Dill, Earth Sci. Rev. 161, 16 (2016)

    CAS  Google Scholar 

  15. J.W. Stucki, B.A. Goodman, U. Schwertmann, Iron in Soils and Clay Minerals (Springer, Dordrecht, 2012)

    Google Scholar 

  16. A.H. Prasad, S. Thenkabail, J.G. Lyon, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (CRC Press, Boca Raton, 2018)

    Google Scholar 

  17. A.K. Panda, B.G. Mishra, D.K. Mishra, R.K. Singh, Colloids Surf. A 363, 98 (2010)

    CAS  Google Scholar 

  18. C. Mousty, Appl. Clay Sci. 27, 159 (2004)

    CAS  Google Scholar 

  19. M. Garman, P.R. Hesse, Plant Soil 42, 477 (1975)

    CAS  Google Scholar 

  20. T.J. Pinnavaia, Science (80-) 220, 365 (1983)

    CAS  Google Scholar 

  21. P.K. Ghosh, A.J. Bard, J. Am. Chem. Soc. 105, 5691 (1983)

    CAS  Google Scholar 

  22. M.S. Prasad, K.J. Reid, H.H. Murray, Appl. Clay Sci. 6, 87 (1991)

    CAS  Google Scholar 

  23. H.H. Murray, Clays Clay Miner. 10, 291 (1961)

    Google Scholar 

  24. I. Štubňa, T. Kozík, J. Therm. Anal. 46, 607 (1996)

    Google Scholar 

  25. M. Pekin, D.E. Bayraktepe, Z. Yazan, Ionics (Kiel) 23, 3487 (2017)

    CAS  Google Scholar 

  26. M.A. El Mhammedi, M. Achak, M. Hbid, M. Bakasse, T. Hbid, A. Chtaini, J. Hazard. Mater. 170, 590 (2009)

    CAS  Google Scholar 

  27. K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, J. Shi, M. Peng, T. Huang, L. Hu, J. Taiwan Inst. Chem. Eng. 89, 77 (2018)

    CAS  Google Scholar 

  28. R. Zhang, V. Alecrim, M. Hummelgård, B. Andres, S. Forsberg, M. Andersson, H. Olin, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  29. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S. Joo, Nanoscale Res. Lett. 9, 393 (2014)

    Google Scholar 

  30. J. Pitroda, S.K. Dave, Int. J. Constr. Res. Civ. Eng. 2, 36 (2016)

    Google Scholar 

  31. X. Qi, N. Liu, Y. Lian, RSC Adv. 5, 17526 (2015)

    CAS  Google Scholar 

  32. K.E. Whitener, AIMS Mater. Sci. 3, 1309 (2016)

    CAS  Google Scholar 

  33. A. Asfaram, M. Ghaedi, H. Javadian, A. Goudarzi, Ultrason. Sonochem. 47, 1 (2018)

    CAS  Google Scholar 

  34. H. Wu, M. Chen, Y. Fan, F. Elsebaei, Y. Zhu, Talanta 88, 222 (2012)

    CAS  Google Scholar 

  35. S.E. Nielsen, L.O. Dragsted, J. Chromatogr. B 707, 81 (1998)

    CAS  Google Scholar 

  36. V.S. Chaudhari, R.M. Borkar, U.S. Murty, S. Banerjee, J. Pharm. Biomed. Anal. 186, 113325 (2020)

    CAS  Google Scholar 

  37. K. Ishii, T. Furuta, Y. Kasuya, J. Chromatogr. B 794, 49 (2003)

    CAS  Google Scholar 

  38. Y. Zhang, J. Ouyang, H. Yang, Appl. Clay Sci. 95, 252 (2014)

    CAS  Google Scholar 

  39. P. Scherrer, Gott. Nachr. Math. Phys. 2, 98 (1918)

    Google Scholar 

  40. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    CAS  Google Scholar 

  41. M. Irfan Khan, H.U. Khan, K. Azizli, S. Sufian, Z. Man, A.A. Siyal, N. Muhammad, M. Fai zur Rehman, Appl. Clay Sci. 146, 152 (2017)

    CAS  Google Scholar 

  42. N. Wang, Z. Yang, F. Xu, K. Thummavichai, H. Chen, Y. Xia, Y. Zhu, Sci. Rep. 7, 11829 (2017)

    Google Scholar 

  43. B.B. Zviagina, D.K. McCarty, J. Środonón, V.A. Drits, Clays Clay Miner. 52, 399 (2004)

    CAS  Google Scholar 

  44. B.J. Saikia, G. Parthasarathy, J. Mod. Phys. 01, 206 (2010)

    CAS  Google Scholar 

  45. A. Tironi, M.A. Trezza, E.F. Irassar, A.N. Scian, Procedia Mater. Sci. 1, 343 (2012)

    CAS  Google Scholar 

  46. A. Kumar, P. Lingfa, Mater. Today Proc. 22, 737 (2019)

    Google Scholar 

  47. C. Bich, J. Ambroise, J. Péra, Appl. Clay Sci. 44, 194 (2009)

    CAS  Google Scholar 

  48. M. Diko, G. Ekosse, J. Ogola, Acta Geodyn. Geomater. 13, 149 (2016)

    Google Scholar 

  49. Z. Cebula, S. Żołędowska, K. Dziąbowska, M. Skwarecka, N. Malinowska, W. Białobrzeska, E. Czaczyk, K. Siuzdak, M. Sawczak, R. Bogdanowicz, D. Nidzworski, Sensors 19, 5411 (2019)

    CAS  Google Scholar 

  50. Y. Li, J. Niu, T. Xue, X. Duan, Q. Tian, Y. Wen, X. Lu, J. Xu, L. Lai, Y. Chang, Z. Li, X. Zhao, Y. Chen, J. Electrochem. Soc. 167, 047512 (2020)

    CAS  Google Scholar 

  51. W. Zhang, L. Zong, G. Geng, Y. Li, Y. Zhang, Sens. Actuators B 257, 1099 (2018)

    CAS  Google Scholar 

  52. Y. Fu, Y. Lin, T. Chen, L. Wang, J. Electroanal. Chem. 687, 25 (2012)

    CAS  Google Scholar 

  53. J.V. Piovesan, A. Spinelli, J. Braz. Chem. Soc. 25, 517 (2014)

    CAS  Google Scholar 

  54. J. Li, J. Qu, R. Yang, L. Qu, B. de Harrington, Electroanalysis 28, 1322 (2016)

    CAS  Google Scholar 

  55. G. Ziyatdinova, E. Kozlova, H. Budnikov, J. Electroanal. Chem. 821, 73 (2018)

    CAS  Google Scholar 

  56. K. He, G. Zeng, A. Chen, Z. Huang, M. Peng, T. Huang, G. Chen, Composites B 161, 141 (2019)

    CAS  Google Scholar 

  57. K. He, M. Yan, Z. Huang, G. Zeng, A. Chen, T. Huang, H. Li, X. Ren, G. Chen, Chemosphere 219, 400 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ministry of Science and Technology, Taiwan (MOST 107-2113-M-027-005-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesavan, G., Chen, SM. Carbon-modified kaolin clay using sugar dehydration technique for the electrochemical detection of quercetin. J Mater Sci: Mater Electron 31, 21670–21681 (2020). https://doi.org/10.1007/s10854-020-04680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04680-1

Navigation