Skip to main content
Log in

Effect of citric acid-to-nitrate ratio on combustion synthesis of CuFe2O4 for sodium-ion storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper studies in detail the effect of fuel/oxidant (citric acid/nitrate) ratio on the crystal structure and electrochemical performance of CuFe2O4 prepared by combustion method. The electrochemical tests results show that when the ratio of citric acid to nitrate is 0.6, CuFe2O4 exhibits the best electrochemical performance. After 80 cycles, the discharge specific capacity can still reach 336.2 mAh g−1. In the rate test, after 10 cycles at 2000 mA g−1, the average specific capacity can still maintain at 404.5 mAh g−1. Through the analysis of chemical properties and electrochemical properties, it is believed that the superior performance may stem from the porous structure, appropriate crystallinity, and the suitable grain size induced by the suitable citric acid–nitrate molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Energy Chem. 1, 100012 (2019)

    Article  Google Scholar 

  2. D.M. Soares, G. Singh, Nanotechnology 31, 145403 (2020)

    Article  CAS  Google Scholar 

  3. D. Pahari, S. Puravankara, ACS Sustain. Chem. Eng. 8, 10613–10625 (2020)

    Article  CAS  Google Scholar 

  4. J. Liu, Y. Lu, R. Wang, Z. Xu, X. Li, JOM 72, 3296–3302 (2020)

    Article  CAS  Google Scholar 

  5. T.F. Liu, Y.P. Zhang, Z.G. Jiang, X.Q. Zeng, J.P. Ji, Z.H. Li, X.H. Gao, M.H. Sun, Z. Lin, M. Ling, J.C. Zheng, C.D. Liang, Energy Environ. Sci. 12, 1512–1533 (2019)

    Article  CAS  Google Scholar 

  6. S. Kim, S. Qu, R. Zhang, P.V. Braun, Small 15, 1900258 (2019)

    Article  Google Scholar 

  7. S.H. Yang, S.K. Park, Y.C. Kang, Chem. Eng. J. 370, 1008–1018 (2019)

    Article  CAS  Google Scholar 

  8. M. Sethi, D.K. Bhat, J. Alloys Compd. 781, 1013–1020 (2019)

    Article  CAS  Google Scholar 

  9. J.M. Liu, R.X. Wang, X.C. Zhong, K. Yan, Y.H. Li, Z.F. Xu, Int. J. Electrochem. Soc. 14, 1725–1732 (2019)

    Article  CAS  Google Scholar 

  10. M. Sethi, U.S. Shenoy, S. Muthu, D.K. Bhat, Front. Mater. Sci. 14, 120–132 (2020)

    Article  Google Scholar 

  11. X. Li, P. Dong, C. Liu, X.H. Yu, J.B. Zhao, S.G. Sun, J.M. Liu, Y.J. Zhang, Ceram. Int. 44, 18471–18477 (2018)

    Article  CAS  Google Scholar 

  12. Y. Zhao, X.F. Li, B. Yan, D.B. Xiong, D.J. Li, S. Lawes, X.L. Sun, Adv. Energy Mater. 6, 1502175 (2016)

    Article  Google Scholar 

  13. M.S. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, J. Yoon, Nanomaterials 9, 1176 (2019)

    Article  CAS  Google Scholar 

  14. D.P. Cai, H.B. Zhan, T.H. Wang, Mater. Lett. 197, 241–244 (2017)

    Article  CAS  Google Scholar 

  15. T. Zhou, R. Zhang, Y. Wang, T. Zhang, Sens. Actuators B 281, 885–892 (2019)

    Article  CAS  Google Scholar 

  16. Y.C. Liu, N. Zhang, C.M. Yu, L.F. Jiao, J. Chen, Nano Lett. 16, 3321–3328 (2016)

    Article  CAS  Google Scholar 

  17. M. Sethi, U.S. Shenoy, S. Muthu, D.K. Bhat, N. J. Chem. 44, 4033–4041 (2020)

    Article  CAS  Google Scholar 

  18. S. Jain, K. Adiga, V.P. Verneke, Combust. Flame 40, 71–79 (1981)

    Article  CAS  Google Scholar 

  19. Q. Huang, P. Zhou, H. Yang, L. Zhu, H. Wu, Chem. Eng. J. 325, 466–473 (2017)

    Article  CAS  Google Scholar 

  20. D.T. Dam, T. Huang, J.M. Lee, Sustain. Energy Fuels 1, 324–335 (2017)

    Article  CAS  Google Scholar 

  21. R. Hammami, H. Batis, Arab. J. Chem. 13, 683–693 (2020)

    Article  CAS  Google Scholar 

  22. A. Mali, A. Ataie, Ceram. Int. 30, 1979–1983 (2004)

    Article  CAS  Google Scholar 

  23. D. Zhou, L.P. Xue, N. Wang, ChemElectroChem 6, 1552–1557 (2019)

    Article  CAS  Google Scholar 

  24. L. Kundakovic, M. Flytzani-Stephanopoulos, Appl. Catal. A 171, 13–29 (1998)

    Article  CAS  Google Scholar 

  25. X.Q. Du, Y. Ding, R. Xiang, X. Xiang, Phys. Chem. Chem. Phys. 17, 10648–10655 (2015)

    Article  CAS  Google Scholar 

  26. H.C. Yan, Y.Y. Zhang, Y.X. Wang, J.M. Liu, X. Li, Y.J. Zhang, P. Dong, Ceram. Int. 45, 20796–20802 (2019)

    Article  CAS  Google Scholar 

  27. X.Q. Tang, X.H. Hou, L.M. Yao, S.J. Hu, X. Liu, L.Z. Xiang, Mater. Res. Bull. 57, 127–134 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Science and Technology Program of Jiangxi Province in China (20192BAB216015), Science and Technology Program of Education Department of Jiangxi Province in China (No. GJJ180464) and Scientific Research Foundation of JiangXi University of Science and Technology (jxxjbs17057), Key R&D Programs of Science and Technology Project of Ganzhou City ([2018] 50), and Science and Technology Project of Ganzhou City ([2017] 179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai-Cong Yan or Xue Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JM., Lu, YH., Xu, ZF. et al. Effect of citric acid-to-nitrate ratio on combustion synthesis of CuFe2O4 for sodium-ion storage. J Mater Sci: Mater Electron 32, 94–101 (2021). https://doi.org/10.1007/s10854-020-04655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04655-2

Navigation