Skip to main content

Advertisement

Log in

A CdS quantum dots-sensitized porphyrin-based MOFs for hydrogen evolution reaction in acid media

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Exploiting a renewable and inexpensive electrochemical catalyst for hydrogen evolution reaction (HER) has attracted great attentions recently. In this study, a MOF catalyst CdS@PCN-224(Ni) was fabricated using CdS quantum dots (QDs) and unique PCN-224(Ni) by a simple hydrothermal method. Due to synergetic effect of the CdS QDs and bimetallic porphyrin MOF structure, the special catalyst showed a great electrocatalytic activity with a low overpotential of 120 mV and a current density of 10 mA/cm2 with a Tafel slope of 90.8 mV/dec, which is approaching to that of the Pt/C (42.8 mV/dec). The double-layer capacitances (Cdl) of CdS@PCN-224(Ni) are 9.75 mF/cm2 which is distinctly superior to that of the PCN-224 (2.33 mF/cm2). Even more to the point, this innovative electrochemical catalyst has a wonderful durability in acid solution, which means it could reach a sustainable utilization. In conclusion, the high activity and low-cost catalyst could be a promising candidate for HER devices in acid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Zhang, University of Wollongong, Thesis Collection (2010)

  2. M. Momirlan, T.N. Veziroglu, Renew. Sustain. Energy Rev. 6, 141–179 (2002)

    Article  CAS  Google Scholar 

  3. D.L. Stojić, M.P. Marčeta, S.P. Sovilj, ŠS. Miljanić, J. Power Sources 118, 315–319 (2003)

    Article  Google Scholar 

  4. P.J. Sebastian, M. Martinez, D. Eapen, O. Solorza, O. Savadogo, Int. J. Hydrogen Energy 21, 613–616 (1996)

    Article  CAS  Google Scholar 

  5. X. Fang, L. Jiao, R. Zhang, H.L. Jiang, ACS Appl. Mater. Interfaces 9, 23852–23858 (2017)

    Article  CAS  Google Scholar 

  6. S.L. Gojkovic, S. Gupta, R.F. Savinell, J. Electroanal. Chem. 462, 63–72 (1999)

    Article  CAS  Google Scholar 

  7. G. Paille, M. Gomez-Mingot, C. Roch-Marchal, B. Lassalle-Kaiser, P. Mialane, M. Fontecave, C. Mellot-Draznieks, A. Dolbecq, J. Am. Chem. Soc. 140, 3613–3618 (2018)

    Article  CAS  Google Scholar 

  8. P.M. Usov, B. Huffman, C.C. Epley, M.C. Kessinger, J. Zhu, W.A. Maza, A.J. Morris, ACS Appl. Mater. Interfaces 9, 33539–33543 (2017)

    Article  CAS  Google Scholar 

  9. W. Xu, Q. Ding, P. Sang, J. Xu, Z. Shi, L. Zhao, Y. Chi, W. Guo, J. Phys. Chem. C 119, 21943–21951 (2015)

    Article  CAS  Google Scholar 

  10. P.M. Usov, S.R. Ahrenholtz, W.A. Maza, B. Stratakes, C.C. Epley, M.C. Kessinger, J. Zhu, A.J. Morris, J. Mater. Chem. A 4, 16818–16823 (2016)

    Article  CAS  Google Scholar 

  11. S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, Y.-M. Yang, Appl. Phys. Lett. 90, 143517 (2007)

    Article  Google Scholar 

  12. W.T. Sun, A. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124–1125 (2009)

    Article  Google Scholar 

  13. H. Karimi-Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Chem. Rec. 20, 682–692 (2020)

    Article  CAS  Google Scholar 

  14. H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Mater. Chem. Phys. 250, 123042 (2020)

    Article  CAS  Google Scholar 

  15. H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M.L. Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V.K. Gupta, J. Mol. Liquids 310 (2020)

  16. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283–1342 (2002)

    Article  CAS  Google Scholar 

  17. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 130, 7176–7177 (2008)

    Article  CAS  Google Scholar 

  18. M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 134, 15720–15723 (2012)

    Article  CAS  Google Scholar 

  19. L. Xinyung, Cem. Concr. Res. 27, 293–302 (1997)

    Article  Google Scholar 

  20. L. Zhan, Y. Du, Z. Zhang, D. Pang, React. Funct. Polym. 55, 35–43 (2003)

    Article  Google Scholar 

  21. C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, Q. Hao, Appl. Catal. B  262, 118245 (2020)

    Article  CAS  Google Scholar 

  22. D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, J. Am. Chem. Soc. 135, 17105–17110 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Zhejiang Top Priority Discipline of Textile Science and Engineering, Natural Science Foundation of Zhejiang Province (No. LY13B030009), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (No. 1101820-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Wan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Luo, Y. & Wan, J. A CdS quantum dots-sensitized porphyrin-based MOFs for hydrogen evolution reaction in acid media. J Mater Sci: Mater Electron 31, 21214–21221 (2020). https://doi.org/10.1007/s10854-020-04634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04634-7

Navigation