Skip to main content
Log in

Fabrication of heat-treated bulk copper for binder-free electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple annealing method was applied to prepare agglomerated copper nanoparticles on a bulk copper current collector. Copper oxide electrodes were obtained by heat treatment of bulk copper at different temperatures and for different lengths of time. The effect of annealing temperature and time on chemical and surface structure was explored. XRD, XPS, FTIR and SEM were used for characterization of the structural, compositional and morphological properties of non-annealed and annealed copper. The electrochemical performance of the electrodes was examined in different electrolytes (neutral, alkaline and ionic liquid). Copper-based electrodes were annealed at 300 °C for 30 min and their specific capacitance at a scan rate of 5 mV s−1 was calculated to be 1900 F g−1. The electrochemical performance of annealed copper was not enriched by annealing the copper electrode for long durations because the electrochemical reaction of the copper oxide film occurs between the alkali and only the outmost surface of the annealed copper. The performance of the as-prepared copper oxide electrodes was attributed to the morphology of the electrode, not its thickness. The synthesis of copper oxide by annealing in a muffle furnace could provide an easy method for the production of copper-based electrodes for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Apergis, J.E. Payne, Renewable and non-renewable energy consumption-growth nexus: evidence from a panel error correction model. Energy Econ. 34, 733–738 (2012)

    Article  Google Scholar 

  2. R.J. Andres, G. Marland, I. Fung, E. Matthews, A 1 × 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Glob. Biogeochem. Cycles 10, 419–429 (1996)

    Article  CAS  Google Scholar 

  3. S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  4. F. Barbir, T. Molter, L. Dalton, Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications. Int. J. Hydrog. Energy 30, 351–357 (2005)

    Article  CAS  Google Scholar 

  5. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  6. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014). https://doi.org/10.1002/adma.201304137

    Article  CAS  Google Scholar 

  7. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  8. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010)

    Article  CAS  Google Scholar 

  9. M.F. Montemor, S. Eugénio, N. Tuyen, R.P. Silva, T.M. Silva, M.J. Carmezim, Nanostructured transition metal oxides produced by electrodeposition for application as redox electrodes for supercapacitors. Handb. Nanoelectrochem. Electrochem. Synth. Methods Prop. Charact. Tech. (2016), pp. 681–714

  10. M. Ilhan, M.M. Koc, B. Coskun, F.Y. Lu, Optical, electrical and photoresponsive properties of Cu2NiSnS4 solar detectors. J. Electron. Mater. 49, 4457–4465 (2020)

    Article  CAS  Google Scholar 

  11. O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, R. Adelung, Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications. Phys. Status Solidi (RRL) Rapid Res. Lett. 10, 260–266 (2016)

    Article  CAS  Google Scholar 

  12. C. Thangamani, M. Ponnar, P. Priyadharshini, P. Monisha, S.S. Gomathi, K. Pushpanathan, Magnetic behavior of ni-doped cuo nanoparticles synthesized by microwave irradiation method. Surf. Rev. Lett. 26, 1850184 (2019)

    Article  CAS  Google Scholar 

  13. S.Z. Golkhatmi, M. Khalaj, A. Izadpanahi, A. Sedghi, One-step electrodeposition synthesis of high performance Graphene/Cu2O nanocomposite films on copper foils as binder-free supercapacitor electrodes. Solid State Sci. 106, 106336 (2020)

    Article  CAS  Google Scholar 

  14. J. Chavez-Galan, R. Almanza, Solar filters based on iron oxides used as efficient windows for energy savings. Sol. Energy 81, 13–19 (2007)

    Article  CAS  Google Scholar 

  15. L. Li, Z. Wang, T. Wang, J. Gong, B. Qi, Highly sensitive non-enzymatic MP sensor based on electrospun copper oxide-doped zirconium oxide composite microfibers. J. Electroanal. Chem. 846, 113171 (2019)

    Article  CAS  Google Scholar 

  16. S. Deki, K. Akamatsu, T. Yano, M. Mizuhata, A. Kajinami, Preparation and characterization of copper (I) oxide nanoparticles dispersed in a polymer matrix. J. Mater. Chem. 8, 1865–1868 (1998)

    Article  CAS  Google Scholar 

  17. M. Mirzaei, A.P. Soleymani, A. Ashrafi, M.M. Momeni, Electrochemically enhanced hydrothermal production of cupric oxide photoelectrode on copper substrate. J. Electrochem. Soc. 167, 66507 (2020)

    Article  CAS  Google Scholar 

  18. L. Armelao, D. Barreca, M. Bertapelle, G. Bottaro, C. Sada, E. Tondello, A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Films 442, 48–52 (2003)

    Article  CAS  Google Scholar 

  19. C. Sachse, N. Weiß, N. Gaponik, L. Müller-Meskamp, A. Eychmüller, K. Leo, ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 4, 1300737 (2014)

    Article  Google Scholar 

  20. V. Branzoi, F. Branzoi, L. Pilan, Characterization of electrodeposited polymeric and composite modified electrodes on cobalt based alloy. Mater. Chem. Phys. 118, 197–202 (2009)

    Article  CAS  Google Scholar 

  21. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 82, 599–606 (2006)

    Article  CAS  Google Scholar 

  22. Y.T. Prabhu, K.V. Rao, V.S. Sai, T. Pavani, A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J. Saudi Chem. Soc. 21, 180–185 (2017)

    Article  CAS  Google Scholar 

  23. M. Kouti, L. Matouri, Fabrication of nanosized cuprous oxide using fehling’s solution. Sci. Iran. 17, 73–78 (2010)

    Google Scholar 

  24. D. Collins, T. Luxton, N. Kumar, S. Shah, V.K. Walker, V. Shah, Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7, e42663 (2012)

    Article  CAS  Google Scholar 

  25. P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv. 4, 40580–40587 (2014)

    Article  CAS  Google Scholar 

  26. N.K. Yetim, N. Aslan, A. Sarıoğlu, N. Sarı, M.M. Koç, Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J. Mater. Sci. Mater. Electron. (2020), pp. 1–11

  27. C. Carel, M. Mouallem-Bahout, J. Gaude, Re-examination of the non-stoichiometry and defect structure of copper (II) oxide or tenorite, Cu1 ± zO or CuO1 ± ϵ: a short review. Solid State Ion. 117, 47–55 (1999)

    Article  CAS  Google Scholar 

  28. L.D.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520, 6368–6374 (2012)

    Article  CAS  Google Scholar 

  29. V.V.T. Padil, M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889 (2013). https://doi.org/10.2147/IJN.S40599

    Article  CAS  Google Scholar 

  30. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int. J. Nanomed. 7, 3527 (2012)

    Article  CAS  Google Scholar 

  31. M.F. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82, 623–629 (2008). https://doi.org/10.1016/j.vacuum.2007.10.004

    Article  CAS  Google Scholar 

  32. D. Tahir, S. Ilyas, B. Abdullah, B. Armynah, K. Kim, H.J. Kang, Modification in electronic, structural, and magnetic properties based on composition of composites copper (II) oxide (CuO) and carbonaceous material. Mater. Res. Express 6, 35705 (2018)

    Article  Google Scholar 

  33. F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147, 987–995 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  CAS  Google Scholar 

  34. P.F.B.D. Martins, P.P. Lopes, E.A. Ticianelli, V.R. Stamenkovic, N.M. Markovic, D. Strmcnik, Hydrogen evolution reaction on copper: promoting water dissociation by tuning the surface oxophilicity. Electrochem. Commun. 100, 30–33 (2019)

    Article  CAS  Google Scholar 

  35. S. Dulal, E.A. Charles, S. Roy, Dissolution from electrodeposited copper–cobalt–copper sandwiches. J. Appl. Electrochem. 34, 151–158 (2004)

    Article  CAS  Google Scholar 

  36. A.P. Abbott, G. Frisch, J. Hartley, W.O. Karim, K.S. Ryder, Anodic dissolution of metals in ionic liquids. Prog. Nat. Sci. Mater. Int. 25, 595–602 (2015)

    Article  CAS  Google Scholar 

  37. G. Liang, F. Mo, Q. Yang, Z. Huang, X. Li, D. Wang, Z. Liu, H. Li, Q. Zhang, C. Zhi, Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31, 1905873 (2019)

    Article  CAS  Google Scholar 

  38. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 7, 4851–4860 (2015)

    Article  CAS  Google Scholar 

  39. K.P.S. Prasad, D.S. Dhawale, T. Sivakumar, S.S. Aldeyab, J.S.M. Zaidi, K. Ariga, A. Vinu, Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Sci. Technol. Adv. Mater. 12, 44602 (2011)

    Article  Google Scholar 

  40. J.-Y. Go, S.-I. Pyun, A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J. Solid State Electrochem. 11, 323–334 (2007)

    Article  CAS  Google Scholar 

  41. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gaziantep University BAP for supplying the equipment used to carry out this research (MF.ALT.19.18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulcabbar Yavuz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, A., Bedir, M. & Tunç, A. Fabrication of heat-treated bulk copper for binder-free electrodes. J Mater Sci: Mater Electron 31, 21168–21179 (2020). https://doi.org/10.1007/s10854-020-04629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04629-4

Navigation