Skip to main content
Log in

Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1−xZnxBr4 as a two-dimensional quantum-confined scintillator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(C6H5C2H4NH3)2Pb1−xZnxBr4 (x = 0.05, 0.1, and 0.25) single crystals were fabricated as a two-dimensional quantum-confined scintillator by the poor-solvent diffusion method. In the photoluminescence (PL) emission map, two emission peaks due to the excitons in the inorganic layer were observed at around 410 and 440 nm. The PL quantum yields of x = 0.05, 0.1, and 0.25 samples were 21.7, 25.3, and 21.0% with typical errors of ± 2%, respectively. By measuring scintillation spectra under X-ray irradiation, the emission peak due to free excitons can be observed at around 440 nm. According to the pulse-height spectra under 137Cs γ-ray (662 keV) irradiation, the light yields of x = 0.05, 0.1, and 0.25 samples were about 15,100, 17,800, and 14,100 ph/MeV with experimental error of ± 10%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Blasse, Chem. Mater. 6, 1465 (1994)

    CAS  Google Scholar 

  2. T.J. Hajagos, C. Liu, N.J. Cherepy, Q. Pei, Adv. Mater. 30, 1706956 (2018)

    Google Scholar 

  3. P. Dorenbos, Radiation Detectors for Medical Applications (Springer Netherlands, Dordrecht, 2006), pp. 191–207

    Google Scholar 

  4. T. Yanagida, Proc. Jpn. Acad. Ser. B 94, 75 (2018)

    CAS  Google Scholar 

  5. C.W.E. van Eijk, Phys. Med. Biol. 47, R85 (2002)

    Google Scholar 

  6. V.A. Bashkirov, R.W. Schulte, R.F. Hurley, R.P. Johnson, H.F.W. Sadrozinski, A. Zatserklyaniy, T. Plautz, V. Giacometti, Med. Phys. 43, 664 (2016)

    CAS  Google Scholar 

  7. J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, Phys. Procedia 90, 285 (2017)

    CAS  Google Scholar 

  8. Y. Kharzheev, J. Lasers, Opt. Photonics 4, 1 (2017)

    Google Scholar 

  9. M. Kole, M. Chauvin, Y. Fukazawa, K. Fukuda, S. Ishizu, M. Jackson, T. Kamae, N. Kawaguchi, T. Kawano, M. Kiss, E. Moretti, M. Pearce, S. Rydström, H. Takahashi, T. Yanagida, Nucl. Instrum. Methods Phys. Res. A 770, 68 (2015)

    CAS  Google Scholar 

  10. M. Lowdon, P.G. Martin, M.W.J. Hubbard, M.P. Taggart, D.T. Connor, Y. Verbelen, P.J. Sellin, T.B. Scott, Sensors 19, 3828 (2019)

    CAS  Google Scholar 

  11. K. Watanabe, T. Yanagida, K. Fukuda, A. Koike, T. Aoki, A. Uritani, Sens. Mater. 27, 269 (2015)

    CAS  Google Scholar 

  12. S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, M.K. Klintenberg, Nucl. Instrum. Methods Phys. Res. A 505, 111 (2003)

    CAS  Google Scholar 

  13. C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 392, 285 (1997)

    Google Scholar 

  14. J. Glodo, R. Hawrami, K.S. Shah, J. Cryst. Growth 379, 73 (2013)

    CAS  Google Scholar 

  15. K. Takagi, T. Fukazawa, Appl. Phys. Lett. 42, 43 (1983)

    CAS  Google Scholar 

  16. B. Yang, L. Yin, G. Niu, J.-H. Yuan, K.-H. Xue, Z. Tan, X.-S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, J. Tang, Adv. Mater. 31, 1904711 (2019)

    CAS  Google Scholar 

  17. A.F. Shields, J.R. Grierson, B.M. Dohmen, H.-J. Machulla, J.C. Stayanoff, J.M. Lawhorn-Crews, J.E. Obradovich, O. Muzik, T.J. Mangner, Nat. Med. 4, 1334 (1998)

    CAS  Google Scholar 

  18. C.W.E. van Eijk, Radiat. Prot. Dosimetry. 129, 13 (2008)

    Google Scholar 

  19. S. Weber, D. Christ, M. Kurzeja, R. Engels, G. Kemmerling, H. Halling, in 2002 IEEE Nuclear Science Symposium Conference Record (IEEE, 2002), pp. 1640–1642

  20. D.R. Schaart, H.T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Löhner, F.J. Beekman, Phys. Med. Biol. 54, 3501 (2009)

    CAS  Google Scholar 

  21. I. Valais, C. Michail, S. David, C.D. Nomicos, G.S. Panayiotakis, I. Kandarakis, Phys. Med. 24, 122 (2008)

    CAS  Google Scholar 

  22. H. Zhang, N.T. Vu, Q. Bao, R.W. Silverman, B.N. Berry-Pusey, A. Douraghy, D.A. Williams, F.R. Rannou, D.B. Stout, A.F. Chatziioannou, IEEE Trans. Nucl. Sci. 57, 1038 (2010)

    CAS  Google Scholar 

  23. M.A. Spurrier, P. Szupryczynski, K. Yang, A.A. Carey, C.L. Melcher, IEEE Trans. Nucl. Sci. 55, 1178 (2008)

    CAS  Google Scholar 

  24. S.E. Derenzo, E. Bourret-Courshesne, G. Bizarri, A. Canning, Nucl. Instrum. Methods Phys. Res. A 805, 36 (2016)

    CAS  Google Scholar 

  25. K. Shibuya, M. Koshimizu, K. Asai, H. Shibata, Appl. Phys. Lett. 84, 4370 (2004)

    CAS  Google Scholar 

  26. T. Yanagida, Y. Fujimoto, M. Koshimizu, E-J. Surf. Sci. Nanotechnol. 12, 396 (2014)

    Google Scholar 

  27. T. Yanagida, G. Okada, T. Kato, D. Nakauchi, S. Yanagida, Appl. Phys. Express 9, 042601 (2016)

    Google Scholar 

  28. T. Yanagida, M. Koshimizu, G. Okada, Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/JJAP.55.02BC03

    Article  Google Scholar 

  29. K. Shibuya, M. Koshimizu, H. Murakami, Y. Muroya, Y. Katsumura, K. Asai, Jpn. J. Appl. Phys. 43, L1333 (2004)

    Google Scholar 

  30. Y. Kato, D. Ichii, K. Ohashi, H. Kunugita, K. Ema, K. Tanaka, T. Takahashi, T. Kondo, Solid State Commun. 128, 15 (2003)

    CAS  Google Scholar 

  31. S. Kishimoto, K. Shibuya, F. Nishikido, M. Koshimizu, R. Haruki, Y. Yoda, Appl. Phys. Lett. 93, 261901 (2008)

    Google Scholar 

  32. N. Kawano, M. Koshimizu, Y. Sun, N. Yahaba, Y. Fujimoto, T. Yanagida, K. Asai, J. Phys. Chem. C 118, 9101 (2014)

    CAS  Google Scholar 

  33. A. Xie, C. Hettiarachchi, F. Maddalena, M.E. Witkowski, M. Makowski, W. Drozdowski, A. Arramel, A.T.S. Wee, S.V. Springham, P.Q. Vuong, H.J. Kim, C. Dujardin, P. Coquet, M.D. Birowosuto, C. Dang, Commun. Mater. 1, 37 (2020)

    Google Scholar 

  34. Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A.A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D.B.L. Teh, A.H. All, O.F. Mohammed, O.M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 561, 88 (2018)

    CAS  Google Scholar 

  35. F. Maddalena, L. Tjahjana, A. Xie, S. Arramel, H. Zeng, P. Wang, W. Coquet, C. Drozdowski, C. Dujardin, Dang, M. Birowosuto, Crystals 9, 88 (2019)

    Google Scholar 

  36. N. Kawano, D. Nakauchi, H. Kimura, M. Akatsuka, K. Takahashi, F. Kagaya, T. Yanagida, Jpn. J. Appl. Phys. 58, 082004 (2019)

    CAS  Google Scholar 

  37. N. Kawano, M. Koshimizu, G. Okada, Y. Fujimoto, N. Kawaguchi, T. Yanagida, K. Asai, Jpn. J. Appl. Phys. 57, 02CA03 (2018)

    Google Scholar 

  38. M. Akatsuka, N. Kawano, T. Kato, D. Nakauchi, G. Okada, N. Kawaguchi, T. Yanagida, Nucl. Instrum. Methods Phys. Res. A 954, 161372 (2020)

    CAS  Google Scholar 

  39. D. Nakauchi, N. Kawano, N. Kawaguchi, T. Yanagida, Jpn. J. Appl. Phys. 59, SCCB04 (2020)

  40. T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Opt. Mater. (Amst). 35, 2480 (2013)

    CAS  Google Scholar 

  41. P. Kantuptim, M. Akatsuka, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida, Sens. Mater. 32, 1357 (2020)

    Google Scholar 

  42. N. Kitazawa, Jpn. J. Appl. Phys. 36, 6876 (1997)

    CAS  Google Scholar 

  43. A. Horimoto, N. Kawano, D. Nakauchi, H. Kimura, M. Akatsuka, T. Yanagida, Sensors Mater. 32, 1395 (2020)

  44. L. Zhang, L. Wu, K. Wang, B. Zou, Adv. Sci. 6, 1801628 (2019)

    Google Scholar 

  45. N. Kitazawa, M. Aono, Y. Watanabe, Mater. Chem. Phys. 134, 875 (2012)

    CAS  Google Scholar 

  46. N. Kawano, M. Koshimizu, G. Okada, Y. Fujimoto, N. Kawaguchi, T. Yanagida, K. Asai, Sci. Rep. 7, 14754 (2017)

    Google Scholar 

  47. N. Kawano, M. Koshimizu, A. Horiai, F. Nishikido, R. Haruki, S. Kishimoto, K. Shibuya, Y. Fujimoto, T. Yanagida, K. Asai, Jpn. J. Appl. Phys. 55, 110309 (2016)

    Google Scholar 

  48. A. Lempicki, A.J. Wojtowicz, E. Berman, Nucl. Instrum. Methods Phys. Res. A 333, 304 (1993)

    CAS  Google Scholar 

  49. Y. Uchiyama, M. Kouda, C. Tanihata, N. Isobe, T. Takahashi, T. Murakami, M. Tashiro, K. Makihima, Y. Fukazawa, T. Kamae, IEEE Trans. Nucl. Sci. 48, 379 (2001)

    CAS  Google Scholar 

  50. M. Balcerzyk, M. Moszynski, M. Kapusta, D. Wolski, J. Pawelke, C.L. Melcher, IEEE Trans. Nucl. Sci. 47, 1319 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research A (17H01375), Scientific Research B (18H03468 and 19H03533), Early-Career Scientists (19K20596), and JSPS Fellows (19J22402) from JSPS. The Cooperative Research Project of Research Center for Biomedical Engineering, Iketani Foundation, and Nippon Sheet Glass Foundation are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Onoda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onoda, D., Akatsuka, M., Kawano, N. et al. Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1−xZnxBr4 as a two-dimensional quantum-confined scintillator. J Mater Sci: Mater Electron 31, 20798–20804 (2020). https://doi.org/10.1007/s10854-020-04592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04592-0

Navigation