Skip to main content
Log in

Efficiency enhancement of silicon solar cells by silicon quantum dots embedded in ZnO films as down-shifting coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the incorporation of silicon quantum dots (SiQDs) in zinc oxide (ZnO) films to develop coatings that improve the efficiency of silicon solar cells is reported. The down-shifting conversion of the SiQDs was used to enhance the efficiency of a photovoltaic device. The room temperature spectrum centered at 510 nm (2.43 eV) for the SiQDs is shown. The transmittance of the SiQDs-ZnO samples was measured and the band gap (Eg) was estimated through Tauc’s method. An increase on the band gap from 3.35 to 3.55 eV as function of the incorporation of SiQDs was obtained. The influence of the SiQDs in the oxide crystallinity of the wurtzite structure was studied through the X-ray diffraction. To determine the current increase under a standard test condition (STC) was achieved and an overall efficiency of 17.58% was obtained using a SiQDs-ZnO coating on silicon solar cells. The synergistic effect of SiQDs addition to ZnO films was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. El-Atab, A. Ozcan, S. Alkis, A.K. Okyay, A. Nayfeh, Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission. Appl. Phys. Lett. 104(1), 013112 (2014)

    Article  Google Scholar 

  2. Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 57(1), 26–41 (2010)

    Article  CAS  Google Scholar 

  3. C. Liu, H. Xu, Y. Sun, J. Ma, Y. Liu, ZnO ultraviolet random laser diode on metal copper substrate. Opt. Express 22(14), 16731–16737 (2014)

    Article  CAS  Google Scholar 

  4. H.F. Pang, Y.Q. Fu, Z.J. Li, Y. Li, J.Y. Ma, F. Placido, A.J. Walton, X.T. Zu, Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36 y-cut litao3. Sens. Actuators, A 193, 87–94 (2013)

    Article  CAS  Google Scholar 

  5. S. Kim, H. Moon, D. Gupta, S. Yoo, Y.-K. Choi, Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Devices 56(4), 696–699 (2009)

    Article  CAS  Google Scholar 

  6. Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 8(5), 1501–1505 (2008)

    Article  CAS  Google Scholar 

  7. R. Vittal, K.C. Ho, Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Article  CAS  Google Scholar 

  8. P. Zang, J. Wu, T. Zhang, Y. Wang, D. Liu, H. Chen, L. Ji, Ch Liu, W. Ahmad, Z. David Chen, S. Li, Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018)

    Article  Google Scholar 

  9. O. Chin Boon, Ng Law Yong, M. Abdul Wahab, A review of ZnO nanoparticles as solar photocatalyst: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  Google Scholar 

  10. H.J. Higuera-Valenzuela, F. Romo-García, D. Cabrera-German, A. Ramos-Carrazco, R. Rosas-Burgos, R. García-Gutierrez, O. Contreras, D. Berman-Mendoza, Novel two-stage method for the synthesis of silicon quantum dots embedded on ZnO matrix. Mater. Lett. 228, 157 (2018)

    Article  CAS  Google Scholar 

  11. S. Mirabella, R. Agosta, G. Franzo, I. Crupi, M. Miritello, R. Lo Savio, M. Di Stefano, S. Di Marco, F. Simone, A. Terrasi, Light absorption in silicon quantum dots embedded in silica. J. Appl. Phys. 106(10), 103505 (2009)

    Article  Google Scholar 

  12. S. Dutta, S. Chatterjee, K. Mallem, Y. Hyun Cho, J. Yi, Control of size and distribution of silicon quantum dots in silicon dielectrics for solar cell application: a review. Renew. Energy 144, 2–14 (2019)

    Article  CAS  Google Scholar 

  13. S. Morozova, M. Alikina, A. Vinogradov, M. Pagliaro, Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes. Front. Chem. 8, 1–8 (2020)

    Article  Google Scholar 

  14. R. López-Delgado, H.J. Higuera-Valenzuela, A. Zazueta-Raynaud, A. Ramos-Carrazco, J. Pelayo, D. Berman-Mendoza, M. Álvarez-Ramos, A. Ayon, Solar cell efficiency improvement employing down-shifting silicon quantum dots. Microsyst. Technol. 24(1), 495–502 (2017)

    Article  Google Scholar 

  15. K.Y. Kuo, C.C. Liu, P.R. Huang, S.W. Hsu, W.L. Chuang, Y.J. Chen, P.T. Lee, Improvement of optical transmittance and electrical properties for the si quantum dot-embedded ZnO thin film. Nanoscale Res. Lett. 8(1), 439 (2013)

    Article  Google Scholar 

  16. Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.B. Wong, S.T. Lee, Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21(6), 661–664 (2009)

    Article  CAS  Google Scholar 

  17. J. Wang, D. Ye, G. Liang, J. Chang, J. Kong, J. Chen, One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J. Mater. Chem. B 2(27), 4338–4345 (2014)

    Article  CAS  Google Scholar 

  18. R. Pena-Alonso, F. Rubio, J. Rubio, J. Oteo, Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by ft-ir spectroscopy. J. Mater. Sci. 42(2), 595–603 (2007)

    Article  CAS  Google Scholar 

  19. Z. Lou, J. Hao, Cathodoluminescence of rare-earth-doped zinc aluminate films. Thin Solid Films 450(2), 334–340 (2004)

    Article  CAS  Google Scholar 

  20. M. Macias-Montero, S. Askari, S. Mitra, C. Rocks, C. Ni, V. Svrcek, P.A. Connor, P. Maguire, J.T.S. Irvine, D. Mariotti, Energy band diagram of device-grade silicon nanocrystals. Nanoscale 8(12), 6623–6628 (2016)

    Article  CAS  Google Scholar 

  21. A. Furasova, E. Calabro, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, A. Di Carlo, Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells. Adv. Opt. Mater. 6, 1–7 (2018)

    Article  Google Scholar 

  22. A. Jilani, M.S. Abdel-wahab, H. Zahran, I. Yahia, A.A. AlGhamdi, Linear and nonlinear optical investigations of nano-scale sidoped ZnO thin films: spectroscopic approach. Appl. Phys. A 122(9), 862 (2016)

    Article  Google Scholar 

  23. E. Burstein, Anomalous optical absorption limit in insb. Phys. Rev. 93(3), 632 (1954)

    Article  CAS  Google Scholar 

  24. J. Clatot, M. Nistor, A. Rougier, Influence of si concentration on electrical and optical properties of room temperature zno: Si thin films. Thin Solid Films 531, 197–202 (2013)

    Article  CAS  Google Scholar 

  25. J. Selverian, Colorcalculator. Beverly, MA 01915–1068: OSRAM SYLVANIA, Inc, 2020

  26. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17(2), 142–144 (1992)

    Article  Google Scholar 

  27. A. Meza-Rocha, I. Camarillo, R. Lozada-Morales, U. Caldiño, Reddish-orange and neutral/warm white light emitting phosphors: Eu3+, dy3+ and dy3+/eu3+ in potassium-zinc phosphate glasses. J. Lumin. 183, 341–347 (2017)

    Article  CAS  Google Scholar 

  28. A.N. Anslg, C78. 376–2001: Specifications for the chromaticity of fluorescent lamps (ANSI, American National Standard Institute, Washington, DC, USA, 2001)

    Google Scholar 

  29. I. Sorar, D. Saygin-Hinczewski, M. Hinczewski, F. Tepehan, Optical and structural properties of si-doped ZnO thin films. Appl. Surf. Sci. 257(16), 7343–7349 (2011)

    Article  CAS  Google Scholar 

  30. B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, D. Yu, Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Mater. Chem. Phys. 113(1), 103–106 (2009)

    Article  CAS  Google Scholar 

  31. A. Ayon, U. Tronco-Jurado, R. Lopez-Delgado, A. Zazueta-Raynaud, J. Pelayo-Ceja, H.J. Higuera-Valenzuela, D. Berman-Mendoza, A. Ramos-Carrazco, Compositions for uv sequestration and methods of use. US patent 0374975, A1 (2018)

    Google Scholar 

  32. A. Gholizadeh, A. Reyhani, P. Parvin, S.Z. Mortazavi, Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting. J. Phys. D 50(1–7), 185501 (2017)

    Article  Google Scholar 

  33. G. Rezaee, S.Z. Mortazavi, S. Mirershadi, A. Reyhani, Efficiency enhancement of CdSe quantum dots assisted Si-solar cell. J. Mater. Sci. Mater. Electron. 29(1), 500–508 (2018). https://doi.org/10.1007/s10854-017-7939-6

    Article  CAS  Google Scholar 

  34. M. Linghai, W. Xian-Gang, M. Sai, S. Lifu, Z. Mengjiao, W. Lingxue, C. Yu, C. Qi, Z. Haizheng, Improving the efficiency of silicon solar cells using in situ fabricated perovskite quantum dots as luminescence downshifting materials. Nanophotonics 9, 1–8 (2019)

    Article  Google Scholar 

  35. A. Flores-Pacheco, M.E. Álvarez-Ramos, A. Ayón, Down-shifting by quantum dots for silicon solar cell applications, in Solar Cells and Light Management, Chapter 13 (Elsevier, 2020), pp. 443–477

Download references

Acknowledgements

Authors thanks the nanoFAB Laboratory for the use of its facilities, CeMIE-SOL for the use of their characterization equipment, and also to CONACyT for the Scholarship No. 286850 provided, basic science Project No. 242508, FORDECyT Project No. 272894, and CIC-UMSNH under Project 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramos-Carrazco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuera-Valenzuela, H.J., Ramos-Carrazco, A., García-Gutierrez, R. et al. Efficiency enhancement of silicon solar cells by silicon quantum dots embedded in ZnO films as down-shifting coating. J Mater Sci: Mater Electron 31, 20561–20570 (2020). https://doi.org/10.1007/s10854-020-04576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04576-0

Navigation