Skip to main content
Log in

Low temperature sintered of Ba3MgNb2O9 ceramics with high quality factor via B-site oxide precursor method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

B-site oxide precursor method was utilized to synthesize Ba3MgNb2O9 ceramics. The effects of sintering temperature on phase composition of Ba3MgNb2O9 ceramics was evaluated by the X-ray diffraction. Experimental results indicated that all prepared Ba3MgNb2O9 ceramics exhibited 1:2 ordered hexagonal structure. The second phase Ba5Nb4O15 can emerge in all ceramics due to the decrease of activation energy of reaction, leading to the splitting of Eg(O) vibration mode in the Raman spectra. In addition, lattice parameters of 1:2 ordered phase were obtained from the refinement of XRD patterns. The maximum value of c/a ratio occurred at 1475 °C, meanwhile the ceramics showed the highest 1:2 ordered degree and excellent Q × f. It was also found that the uniform grain-size distribution of Ba3MgNb2O9 powder were important factors for preparing dense Ba3MgNb2O9 ceramics. Moreover, B-site oxide precursor method can not only effectively lower the densification temperature from 1650 to 1475 °C, but also increase the quality factor (Q × f) by about 90.8%, i.e., from 55,277 to 105,467 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T.L. Marzetta, Digit. Signal. Process. 94, 3–20 (2019)

    Article  Google Scholar 

  2. F. Boccardi, R.W. Heath, A. Lozano, T.L. Marzetta, P. Popovski, IEEE. Commun. Mag. 52, 74–80 (2013)

    Article  Google Scholar 

  3. X. Wang, K.L. Wu, IEEE. T. Microw. Theory. 62, 275–281 (2014)

    Article  Google Scholar 

  4. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, J. Mater. Chem. C. 5, 10094–10098 (2017)

    Article  CAS  Google Scholar 

  5. H.F. Cheng, C.T. Chia, H.L. Liu, M.Y. Chen, Y.T. Tzeng, I.N. Lin, J. Eur. Ceram. Soc. 27, 2893–2897 (2017)

    Article  Google Scholar 

  6. S. Manivannan, A. Joseph, P.K. Sharma, K.C.J. Raju, D. Das, Ceram. Int. 41, 10923–10933 (2015)

    Article  CAS  Google Scholar 

  7. Y. Bisht, R. Tomar, P. Abhilash, D.R. Lekshmi, M. Thirumal, B. Mater, Sci. 40, 1165–1170 (2017)

    CAS  Google Scholar 

  8. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93, 787–795 (2010)

    Article  CAS  Google Scholar 

  9. C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, J. Am. Ceram. Soc. 90, 483–489 (2007)

    Article  CAS  Google Scholar 

  10. A. Dias, R.L. Moreira, J. Appl. Phys. 94, 3414–3421 (2003)

    Article  CAS  Google Scholar 

  11. J.B. Lim, J.O. Son, S. Nahm, W.S. Lee, M.J. Yoo, N.G. Gang, H.J. Lee, Y.S. Kim, Jpn. J. Appl. Phys. 43, 5388–5391 (2004)

    Article  CAS  Google Scholar 

  12. S.L. Swartz, T.R. Shrout, Mat. Res. Bull. 17, 1245–1250 (1982)

    Article  CAS  Google Scholar 

  13. C.C. Tsai, S.Y. Chu, C.K. Liang, J. Alloy. Com. 478, 516–522 (2009)

    Article  CAS  Google Scholar 

  14. O. Khamman, R. Yimnirun, S. Ananta, J. Alloy. Com. 465, 522–526 (2008)

    Article  CAS  Google Scholar 

  15. G. Robert, M.D. Maeder, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 84, 2869–2872 (2001)

    Article  CAS  Google Scholar 

  16. J. Rodriguez-Carvajal, Int. Union Crystallogr. Newslett. 26, 12–19 (2001)

    Google Scholar 

  17. B.W. Hakki, P.D. Coleman, I.R.E. Trans, Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  18. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  19. Y.W. Kim, J.H. Park, J.G. Park, J. Eur. Ceram. Soc. 24, 1775–1779 (2004)

    Article  CAS  Google Scholar 

  20. S.B. Desu, H.M. O’Bryan, J. Am. Ceram. Soc. 68, 546–551 (1985)

    Article  CAS  Google Scholar 

  21. D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong, J. Am. Ceram. Soc. 85, 2759–2762 (2002)

    Article  CAS  Google Scholar 

  22. J.X. Liu, Y.M. Kan, G.J. Zhang, J. Am. Ceram. Soc. 93, 370–373 (2010)

    Article  CAS  Google Scholar 

  23. P.P. Ma, H. Gu, X.M. Chen, J. Mater. Chem. C. 3, 10755–10760 (2015)

    Article  CAS  Google Scholar 

  24. Y.X. Shi, J. Shen, J. Zhou, J. Xu, W. Chen, Y.Y. Qi, L. Jiao, Ceram. Int. 41, 253–257 (2015)

    Article  CAS  Google Scholar 

  25. B.K. Kim, H. Hamaguchi, I.T. Kim, K.S. Hong, J. Am. Ceram. Soc. 78, 3117–3120 (1995)

    Article  CAS  Google Scholar 

  26. H. Zhang, C.L. Diao, S.L. Liu, S.Z. Jiang, F. Shi, X.P. Jing, J. Alloy. Com. 587, 717–723 (2014)

    Article  CAS  Google Scholar 

  27. A. Dias, F.M. Matinaga, R.L. Moreira, Chem. Mater. 19, 2335–2341 (2007)

    Article  CAS  Google Scholar 

  28. F. Shi, H. Dong, J. Appl. Phys. 111, 014111 (2012)

    Article  Google Scholar 

  29. T.L. Sun, X.M. Chen, Aip. Adv. 5, 017106 (2015)

    Article  Google Scholar 

  30. I.G. Siny, R.W. Tao, R.S. Katiyar, R.A. Guo, A.S. Bhalla, J. Phys. Chem. Solids. 59, 181–195 (1998)

    Article  CAS  Google Scholar 

  31. T. Kolodiazhnyi, J. Padchasri, R. Yimnirum, J. Eur. Ceram. Soc. 38, 1517–1523 (2018)

    Article  CAS  Google Scholar 

  32. C.T. Lee, C.Y. Huang, Y.C. Lin, J. Yang, J. Am. Ceram. Soc. 90, 3148–3155 (2007)

    Article  CAS  Google Scholar 

  33. H. Zhang, C.L. Diao, S.L. Liu, S.Z. Jiang, X.P. Jing, F. Shi, Ceram. Int. 40, 2427–2434 (2014)

    Article  CAS  Google Scholar 

  34. P.F. Ning, L.X. Li, P. Zhang, W.S. Xia, Ceram. Int. 38, 1391–1398 (2012)

    Article  CAS  Google Scholar 

  35. M.Y. Chen, C.T. Chia, I.N. Lin, L.J. Lin, C.W. Ahn, S. Nahm, J. Eur. Ceram. Soc. 26, 1965–1968 (2006)

    Article  CAS  Google Scholar 

  36. H. Wang, C.E. Huang, Q. Deng, L. Zhao, C.Y. Shen, Ceram. Int. 44, 8700–8705 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Department of Education’s Production-Study-Research combined innovation Funding-“Blue fire plan (Huizhou)” (No. CXZJHZ201733), and Natural Science Foundation of Shandong Province (ZR2018LE003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renli Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fu, R., Liu, X. et al. Low temperature sintered of Ba3MgNb2O9 ceramics with high quality factor via B-site oxide precursor method. J Mater Sci: Mater Electron 31, 20245–20254 (2020). https://doi.org/10.1007/s10854-020-04544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04544-8

Navigation