Skip to main content

Advertisement

Log in

Bloedite-type Na2X(SO4)2 (X = Ni, Mg) as novel alternative aqueous electrolyte materials for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the active use of bloedite-type material in many different areas has revealed the idea that it can also be used in capacitors as the aqueous electrolyte. In this context, aqueous electrolyte properties of bloedite Na2X(SO4)2·(4H2O) (X = Mg, Ni) samples were investigated. In electrochemical measurements, it has been determined that Ni and Mg-bloedite structures have “rectangular shape” cyclic voltammetry (C–V) characteristics. Ni-bloedite capacitors reached 2.35 F g−1, and Mg-bloedite capacitors reached 2.09 F g−1 capacitance values. As a result of cycle-life studies, Ni-bloedite structure provides higher performance than Mg-bloedite structure with a difference of 0.24 F g−1 at the end of 100 cycles. The research results have shown that Ni and Mg-bloedite materials can be used in supercapacitors as an alternative high-performance aqueous electrolyte. This study could also provide an idea to researchers of using different types of materials in energy storage systems, and helps to produce alternative materials for energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. González, J.A. Goikolea, R. Barrena, Mysyk. Renew. Sust. Energ. Rev. 58, 1189–1206 (2016)

    Article  Google Scholar 

  2. Q.T. Qu, B. Wang, L.C. Yang, Y. Shi, S. Tian, Y.P. Wu, Electrochem. Commun. 10, 1652 (2008)

    Article  CAS  Google Scholar 

  3. K. Torchała, K. Kierzek, J. Machnikowski, Electrochim. Acta 86, 260 (2012)

    Article  Google Scholar 

  4. Y.D. Zhong, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015)

    Article  CAS  Google Scholar 

  5. K. Pal, Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications (CRC Press Taylor & Francis Group, Boca Raton, 2019)

    Book  Google Scholar 

  6. K. Pal, F. Gomes, Nanofabrication for Smart Nanosensor Applications, Chapter-12: Micro and Nano Technologies (Elsevier, Amsterdam, 2020), pp. 295–321

    Google Scholar 

  7. K. Pal, Introductory Chapter: Transparent Conducting Films (IntechOpen, Mexico, 2019)

    Book  Google Scholar 

  8. R.R. Zuhang, Y.Z. He, Y.H. Fang, Adv. Mater. Res. 216, 312–315 (2011)

    Article  Google Scholar 

  9. M. Giglio, Acta Cryst. 11, 789 (1958)

    Article  CAS  Google Scholar 

  10. P. Barpanda, Isr. J. Chem. 55, 537–557 (2015)

    Article  CAS  Google Scholar 

  11. V. Bukin, I. Nozik, Z. Yu, J. Struct. Chem. 15, 616 (1974)

    Article  Google Scholar 

  12. S.Y. Pal, S. Ramesh, V. Thangadurai, R. Jose, Nanoscale Adv. 1, 3807 (2019)

    Article  Google Scholar 

  13. D.M. Marinova, E.N. Zhecheva, R.R. Kukeva, P.V. Markov, D.D. Nihtianova, R.K. Stoyanova, J. Solid State Chem. 250, 49 (2017)

    Article  CAS  Google Scholar 

  14. B.P. Ventosa, P. Marzak, J. Yun, F. Schiegg, T. Quast, A.S. Bandarenka, Adv. Sci. 3, 1600211 (2016)

    Article  Google Scholar 

  15. M. Reynaud, G. Rousse, A.M. Abakumov, M.T. Sougrati, G.V. Tendeloo, J.-N. Chotard, J.-M. Tarascon, J. Mater. Chem. A 2, 2671 (2014)

    Article  CAS  Google Scholar 

  16. S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 60, 172 (2015)

    Article  CAS  Google Scholar 

  17. R. Stoyanova, V. Koleva, A. Stoyanova, Chem. Rec. 19, 474–501 (2019)

    Article  CAS  Google Scholar 

  18. S.A. El-Nasser, S. Kim, H. Yoon, R. Toth, K. Pal, M. Bechelany, Org. Electron. 76, 105443 (2020)

    Article  Google Scholar 

  19. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, J. Magn. Magn. Mater. 486, 165254 (2019)

    Article  CAS  Google Scholar 

  20. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Ceram. Int. 44, 20075–20083 (2018)

    Article  CAS  Google Scholar 

  21. G. Yasin, M.J. Anjum, M.U. Malik, M.A. Khan, W.Q. Khan, M. Arif, T. Mehtab, T.A. Nguyen, Y. Slimani, M. Tabish, D. Ali, Y. Zuo, Diam. Relat. Mater. 104, 107763 (2020)

    Article  CAS  Google Scholar 

  22. G. Yasin, M. Arif, T. Mehtab, M. Shakeel, M.A. Mushtaq, A. Kumar, T.A. Nguyen, Y. Slimani, M.T. Nazir, H. Song, Inorg. Chem. Front. 7, 402–410 (2020)

    Article  CAS  Google Scholar 

  23. S. Demirel, Int. J. Electrochem. Sci. 15, 2439 (2020)

    Article  CAS  Google Scholar 

  24. İ. Sönmez, Bull. Min. Res. Exp. 140, 35–53 (2010)

    Google Scholar 

  25. A.V. Kasatkin, F. Nestola, J. Plasil, J. Marty, D.I. Belakovskiy, A.A. Agakhanov, S.J. Mills, D. Pedron, A. Lanza, M. Favaro, S. Bianchin, I.S. Lykova, V. Golias, W.D. Birch, Mineral. Mag. 77, 367 (2013)

    Article  CAS  Google Scholar 

  26. K.C. Tsay, L. Zhang, J. Zhang, Electrochim. Acta 60, 428 (2012)

    Article  CAS  Google Scholar 

  27. I.I.G. Inal, S.M. Holmes, A. Banford, Z. Aktas, Appl. Surface Sci. 357, 696 (2015)

    Article  CAS  Google Scholar 

  28. V.B. Aldama, M. Kunowsky, J. Ibañez, J.M. Rojo, J. Phys. Chem. C 121, 12053–12062 (2017)

    Article  CAS  Google Scholar 

  29. H. Zumbahlen, Linear Circuit Design Handbook (Elsevier, Amsterdam, 2008), pp. 755–765

    Google Scholar 

  30. M. Latifatu, H.S. Lee, C.S. Yoon, J. Oh, J.H. Park, J.W. Park, J.M. Ko, Int. J. Electrochem. Sci. 11, 5353 (2016)

    Article  CAS  Google Scholar 

  31. K. Fic, G. Lota, M. Meller, E. Frackowiak, Energy Environ. Sci. 5, 5842 (2012)

    Article  CAS  Google Scholar 

  32. D.I. Abouelamaiem, G. He, I. Parkin, T.P. Neville, A.B. Jorge, S. Ji, R. Wang, M.-M. Titirici, P.R. Shearing, D.J.L. Brett, Sustain. Energy Fuels 2, 772–785 (2018)

    Article  CAS  Google Scholar 

  33. Q. Abbas, D. Pajak, E. Frackowiak, F. Beguin, Electrochim. Acta 140, 132 (2014)

    Article  CAS  Google Scholar 

  34. S. Suresh, P. Kaushik, C. Zaira Zaman, J. Mater. Sci 28, 17193–17201 (2017)

    Google Scholar 

  35. P. Kaushik, M.L.N.M. Mohan, F. Mike, A. Waqar, Org. Electron. 56, 291–304 (2018)

    Article  Google Scholar 

  36. C.L. McCormick, K.P. Blackmon, D.L. Elliott, J. Polym. Sci. 24, 2619 (1986)

    Article  CAS  Google Scholar 

  37. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  38. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  39. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Demirel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, S. Bloedite-type Na2X(SO4)2 (X = Ni, Mg) as novel alternative aqueous electrolyte materials for supercapacitors. J Mater Sci: Mater Electron 31, 19809–19818 (2020). https://doi.org/10.1007/s10854-020-04505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04505-1

Navigation