Skip to main content
Log in

Synthesis of core/shell-structured CaCu3Ti4O12/SiO2 composites for effective degradation of rhodamine B under ultraviolet light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rapid growth of industrialization has driven the development of wastewater treatment technologies to overcome the environmental pollution that comes with it. Organic-based pollutants such as dyes and petroleum-based hydrocarbons are known to be the major pollutants from industries. Advanced photocatalysts is an alternative solution for organic pollutants clean up without the generation of toxic by-products. In this paper, a forthright dye removal technique by CCTO/SiO2 core–shell composites produced via chemical precipitation was introduced. The core–shell CCTO/SiO2 composites were produced from a silica precursor, i.e. TEOS. The effects of TEOS content (x = 0.5 and 1 ml) on the morphology, structure, and photocatalytic activities of core–shell CCTO/SiO2 composites were studied. The phase compositions and structural properties of core–shell CCTO/SiO2 composites were analyzed by TEM-EDAX, XRD, FTIR, and BET. The particle and crystallite sizes of core–shell CCTO/SiO2 composite produced with higher TEOS content (x = 1 ml) were smaller, i.e. 380 ± 57 nm and 42 nm respectively. However, higher surface area (8.23 m2g−1) was observed. The photodegradation efficiency (η%) of core–shell CCTO/SiO2 composite prepared using 1 ml of TEOS was 76.5% after 40 min exposure to UV light; better than product from the system with 0.5 ml TEOS. The C1S photocatalyst was very stable with a high photodegradation efficiency of 73.5% even after 4 cycles of RhB degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.C. McCall, A. Betanzos, D.A. Weber, P. Nava, G.W. Miller, Toxicol. Appl. Pharmacol. 241, 61–70 (2009)

    CAS  Google Scholar 

  2. V.K. Gupta, J. Environ. Manage. 90, 2313 (2009)

    CAS  Google Scholar 

  3. M. Ahmadipour, M. Arjmand, S.N. Abd Aziz, S.L. Chiam, Z.A. Ahmad, S.Y. Pung, Ceram. Int. 45, 20697–20703 (2019)

    CAS  Google Scholar 

  4. H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder, R. Vaish, Sci. Rep. 6, 18557 (2016)

    CAS  Google Scholar 

  5. A. Sen, K.K. Chattopadhyay, J. Mater. Sci. 27, 10393–10398 (2016)

    CAS  Google Scholar 

  6. J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, M.J. Rosseinsky, J. Am. Chem. Soc. 133, 1016–1032 (2011)

    CAS  Google Scholar 

  7. R. Hailili, Z.Q. Wang, Y. Li, Y. Wang, V.K. Sharma, X.Q. Gong, C. Wang, Appl. Catal. B 221, 422–432 (2018)

    CAS  Google Scholar 

  8. C.F. Hoener, K.A. Allan, A.J. Bard, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, J.M. White, J. Phys. Chem. 96, 3812–3817 (1992)

    CAS  Google Scholar 

  9. R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 23730–32433 (2011)

    Google Scholar 

  10. L.M.L. Marzan, M. Giersig, P. Mulvaney, Chem. Commun. 6, 731–732 (1996)

    Google Scholar 

  11. T. Nann, P. Mulvaney, Angew. Chem. Int. Ed. 43, 5393–5396 (2004)

    CAS  Google Scholar 

  12. A. Cao, R. Lu, G. Veser, Phys. Chem. Chem. Phys. 12, 13499–13510 (2010)

    CAS  Google Scholar 

  13. A. Guerrero-Martínez, J. Pérez-Juste, L.M. Liz-Marzán, Adv. Mater. 22, 1182–1195 (2010)

    Google Scholar 

  14. H.M. Kuang, Z.X. Deng, C.H. Li, X.M. Sun, J. Zhuang, Y.D. Li, Acta. Phys. Chim. Sin. 18, 477–480 (2002)

    CAS  Google Scholar 

  15. X. Zhou, Y. Kobayashi, V. Romanyuk, N. Ochuchi, M. Takeda, S. Tsunekawa, A. Kasuya, Appl. Surf. Sci. 242, 281–286 (2005)

    CAS  Google Scholar 

  16. Q. Lu, F. Guo, L. Sun, A. Li, J. Phys. Chem. C 112, 2836–2844 (2008)

    Google Scholar 

  17. S. Phanichphant, A. Nakaruk, D. Channei, Appl. Surf. Sci. 387, 214–220 (2016)

    CAS  Google Scholar 

  18. Z.Y. Yang, G.Y. Shen, Y.P. He, X.X. Liu, S.J. Yang, J. Porous. Mater. 23, 589–599 (2016)

    CAS  Google Scholar 

  19. A.P.L. Batista, H.W. Pereira Carvalho, G.H.P. Luz, P.F.Q. Martins, M.G. Alves, L.C.A. Oliveira, Environ. Chem. Lett. 8, 63–67 (2010)

    CAS  Google Scholar 

  20. M. Ahmadipour, M. Hatami, K.V. Rao, Adv. Nanopart. 1(3), 37–43 (2012)

    Google Scholar 

  21. L. Yang, R. Xie, L. Liu, D. Xiao, J. Zhu, J. Phys. Chem. C 115, 19507–19512 (2011)

    CAS  Google Scholar 

  22. M. Ahmadipour, M. Arjmand, Z.A. Ahmad, S.Y. Pung, J. Mater. Eng. Perform. 29, 2006–2014 (2020)

    CAS  Google Scholar 

  23. W. Dong, F. Pan, L. Xu, M. Zheng, C.H. Sow, K. Wu, G.Q. Xu, W. Chen, Appl. Surf. Sci. 349, 279–286 (2015)

    CAS  Google Scholar 

  24. C.T. Segundo, J.V. Sánchez, E.M. Palacios, A.G. Díaz, P.G.R. Romero, H.M. Valencia, Desalin. Water Treat. 170, 361–368 (2019)

    CAS  Google Scholar 

  25. Y. Yan, H. Yang, Z. Yi, X. Wang, R. Li, T. Xian, Environ. Eng. Sci. 37, 64–77 (2020)

    CAS  Google Scholar 

  26. M. Ahmadipour, M.F. Ain, S. Goutham, Z.A. Ahmad, Ceram. Int. 44, 18817–18820 (2018)

    CAS  Google Scholar 

  27. M. Ahmadipour, M.J. Abu, M.F.A. Rahman, M.F. Ain, Z.A. Ahmad, Micro-Nano Lett. 11, 147–150 (2016)

    CAS  Google Scholar 

  28. A. Santos, R. Guzmán, J. Espinosa, J. Estrada, J. Phys. 687, 012035 (2016)

    Google Scholar 

  29. L.A. Pérez-Maqueda, F. Franco, M.A. Avilés, J. Poyato, J.L.P. Rodríguez, Clays Clay Miner. 51, 701–708 (2003)

    Google Scholar 

  30. S.S. Nekrashevich, V.A. Gritsenko, Phys. Solid State 56, 207–222 (2014)

    CAS  Google Scholar 

  31. H. Guo, F. Lin, J. Chen, F. Li, W. Weng, Appl. Organomet. Chem. 29, 12–19 (2015)

    CAS  Google Scholar 

  32. B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Appl. Surf. Sci. 357, 346–355 (2015)

    CAS  Google Scholar 

  33. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, AIP Adv. 3, 062126 (2013)

    Google Scholar 

  34. A.O. Turky, M.M. Rashad, Z.I. Zaki, I.A. Ibrahim, M. Bechelany, RSC Adv. 5, 18767 (2015)

    CAS  Google Scholar 

  35. C. Cong, N.T. Yin, W. Can, Z.Y. Liang, Z.D. Xiang, W. Pei, M. Hai, Chin. Phys. Lett. 28, 087304 (2011)

    Google Scholar 

  36. H.B. Xiao, C.P. Yang, C. Huang, L.F. Xu, D.W. Shi, J. Appl. Phys. 111, 063713 (2012)

    Google Scholar 

  37. H.J. Im, M. Iwataki, S. Yamazaki, T. Usui, S. Adachi, M. Tsunekawa, T. Watanabe, K. Takegahara, S. Kimura, M. Matsunami, H. Sato, H. Namatame, M. Taniguchi, Solid State Commun. 217, 17–20 (2015)

    CAS  Google Scholar 

  38. R. Salh, Rijeka (InTech, London, 2011)

    Google Scholar 

  39. L. Zheng, S. Wang, L. Zhao, S. Zhao, J. Nanopart. Res. 18, 318 (2016)

    Google Scholar 

  40. S. Meng, Z. Cao, X. Fu, S. Chen, Appl. Surf. Sci. 324, 188–197 (2015)

    CAS  Google Scholar 

  41. Y. Zhu, T. Wang, W. Wang, S. Chen, E. Lichtfouse, Environ. Chem. Lett. 17, 481–486 (2019)

    CAS  Google Scholar 

  42. X. Zhang, Y. Xie, H. Chen, J. Guo, A. Meng, C. Li, Appl. Surf. Sci. 317, 43–48 (2014)

    CAS  Google Scholar 

  43. C.A. Oliveira, H.S. Oliveira, G. Mayrin, H.S. Mansur, A.A.P. Mansur, R.L. Moreira, Appl. Catal. B 152–153, 403–412 (2014)

    Google Scholar 

  44. M. Salehi, A. Eshaghi, H. Tajizadegan, J. Alloys Compd. 778, 148–155 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research funding (Grant No. RUI USM 1001/PBAHAN/8014095) from Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadipour, M., Arjmand, M., Thirmizir, M.Z.A. et al. Synthesis of core/shell-structured CaCu3Ti4O12/SiO2 composites for effective degradation of rhodamine B under ultraviolet light. J Mater Sci: Mater Electron 31, 19587–19598 (2020). https://doi.org/10.1007/s10854-020-04486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04486-1

Navigation