Skip to main content
Log in

Nature of polar state in 0.67BiFeO3–0.33BaTiO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO3–0.33BaTiO3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodomains are absent both in the initial and polar state of 0.67BF–0.33BT. A typical relaxor-type dielectric anomaly was observed (Tf = ~ 627 K, TB = ~ 820 K). The remnant polarization (Pr), maximum value of electrostrain (Sm), and magnitude strain at Ec in the bipolar mode (Sneg) increase clearly during heating (Pr, ~ 40 µC/cm2; Sm, 0.191% under 40 kV/cm at 453 K). Unlike Bi0.5Na0.5TiO3-based nonergodic relaxors, the first-cycle bipolar electrostrain loops indicate that the minimum strain on the negative side of the bipolar strain curves is negative. Furthermore, the slopes of the relative permittivity versus log frequency plots in unpoled (− 21) and poled (− 23) specimens are similar. The transition between the relaxor state and ferroelectric-like state does not involve a clear dielectric anomaly even in the poled specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. I.H. Ismailzade, R.M. Ismailov, A.I. Alekberov, F.M. Salaev, Investigation of the magnetoelectric (ME)H effect in solid solutions of the systems BiFeO3–BaTiO3 and BiFeO3–PbTiO3. Phys. Status Solidi (a) 68, K81–K85 (1981). https://doi.org/10.1002/pssa.2210680160

    Article  CAS  Google Scholar 

  2. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000). https://doi.org/10.1063/1.371953

    Article  CAS  Google Scholar 

  3. J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy, La). J. Appl. Phys. 96, 468–474 (2004). https://doi.org/10.1063/1.1755430

    Article  CAS  Google Scholar 

  4. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Direct Evidence for Multiferroic Magnetoelectric Coupling in 0.9BiFeO3–0.1BaTiO3. Phys. Rev. Lett. 101, 247602 (2008). https://doi.org/10.1103/PhysRevLett.101.247602

    Article  CAS  Google Scholar 

  5. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1 – x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x

    Article  CAS  Google Scholar 

  6. Y.X. Wei, X.T. Wang, J.J. Jia, X.L. Wang, Multiferroic and piezoelectric properties of 0.65BiFeO3–0.35BaTiO3 ceramic with pseudo-cubic symmetry. Ceram. Int. 38, 3499–3502 (2012). https://doi.org/10.1016/j.ceramint.2011.11.080

    Article  CAS  Google Scholar 

  7. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W.Z. Li, Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233–4239 (2012). https://doi.org/10.1016/j.materresbull.2012.09.027

    Article  CAS  Google Scholar 

  8. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 2013(96), 3163–3168 (2013). https://doi.org/10.1111/JACE.12475

    Article  Google Scholar 

  9. M.H. Lee, D.J. Kim, J.S. Park, W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Du, I. Jeong, High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater. 27, 6976–6982 (2015). https://doi.org/10.1002/ADMA.201502424

    Article  CAS  Google Scholar 

  10. D.G. Zheng, R.Z. Zuo, D.S. Zhang, Y. Li, Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015). https://doi.org/10.1111/jace.13737

    Article  CAS  Google Scholar 

  11. T. Zheng, Z.G. Jiang, J.G. Wu, Enhanced piezoelectricity in (1 – x)Bi1.05Fe1–yAyO3–xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans. 45, 11277–11285 (2016). https://doi.org/10.1039/C6DT01805J

    Article  CAS  Google Scholar 

  12. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram Int 2014(40), 4759–4765 (2014). https://doi.org/10.1016/j.ceramint.2013.09.020

    Article  CAS  Google Scholar 

  13. D.W. Wang, A. Khesro, F.A. Murakami, Q.L. Zhao, I.M. Reaney, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3–BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 37, 1857–1860 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.027

    Article  CAS  Google Scholar 

  14. J.G. Chen, J.R. Chen, Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content. J. Alloy. Compd. 589, 115–119 (2014). https://doi.org/10.1016/j.jallcom.2013.11.169

    Article  CAS  Google Scholar 

  15. J.G. Chen, J.R. Chen, J. Guo, J.X. Cheng, J.L. Wang, H.B. Liu, S.J. Zhang, Excellent thermal stability and aging behaviors in BiFeO3–BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 103, 374–381 (2019). https://doi.org/10.1111/jace.16755

    Article  CAS  Google Scholar 

  16. I. Calisir, A.A. Amirov, A.K. Kleppe, D.A. Hall, Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy. J. Mater. Chem. A 6, 5378–5397 (2018). https://doi.org/10.1039/C7TA09497C

    Article  CAS  Google Scholar 

  17. B.W. Xun, N. Wang, B.P. Zhang, K.K. Wang, Enhanced piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation. Ceram. Int. 45, 24382–24391 (2019). https://doi.org/10.1016/j.ceramint.2019.08.157

    Article  CAS  Google Scholar 

  18. D.Y. Fu, Z.H. Ning, D.L. Hu, J.R. Cheng, F.F. Wang, J.G. Chen, Large and temperature-insensitive piezoelectric strain in xBiFeO3–(1 – x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics. J. Mater. Sci. 54, 1153–1161 (2019). https://doi.org/10.1007/s10853-017-1280-6

    Article  CAS  Google Scholar 

  19. Q. Li, J.X. Wei, T.L. Tu, J.R. Cheng, J.G. Chen, Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3–BaTiO3 ceramics. J. Am. Soc. Ceram. 100, 5573–5583 (2017). https://doi.org/10.1111/jace.15079

    Article  CAS  Google Scholar 

  20. J.X. Wei, D.Y. Fu, J.R. Cheng, J.G. Chen, Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1 – x)BaTiO3 ceramics near the morphotropic phase. J. Mater. Sci. 52, 10726–10737 (2017). https://doi.org/10.1007/S10853-017-1280-6

    Article  CAS  Google Scholar 

  21. L. Wang, R.H. Liang, Z.Y. Zhou, X.L. Dong, Thermally stable electrostrain in BiFeO3–BaTiO3-based high temperature lead-free piezoceramics. Appl. Phys. Lett. 115, 08202 (2019). https://doi.org/10.1063/1.5113919

    Article  CAS  Google Scholar 

  22. F. AKram, R.A. Malik, T.K. Song, S. Lee, M.-H. Kim, Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics. J. Eu. Ceram. Soc. 39, 2304–2309 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.038

    Article  CAS  Google Scholar 

  23. X. Liu, J.W. Zhai, B. Shen, Novel bismuth ferrite-based lead-free incipient piezoceramics with high electromechanical response. J. Mater. Chem. C 7, 5122–5130 (2019). https://doi.org/10.1039/C9TC00826H

    Article  CAS  Google Scholar 

  24. Y.X. Wei, C.Q. Jin, Y.M. Zeng, X.T. Wang, D. Gao, X.L. Wang, A coexistence of multi-relaxor states in 0.5BiFeO3–0.5BaTiO3. Ceram. Inter. 43, 17220–17224 (2017). https://doi.org/10.1016/j.ceramint.2017.09.030

    Article  CAS  Google Scholar 

  25. G. Wang, J.L. Li, X. Zhang, Z.M. Fan, F. Yang, D. Feteira, Zhou, D.C. Sinclair, T. Ma, X.L. Tan, D.W. Wang, I.M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 12, 582–588 (2019). https://doi.org/10.1039/C8EE03287D

    Article  CAS  Google Scholar 

  26. H.N. Sun, X.J. Wang, Q.Z. Sun, X.X. Zhang, Z. Ma, M.Y. Guo, B.W. Sun, X.P. Zhu, X.J. Lou, Large energy storage density in BiFeO3–BaTiO3–AgNbO3 lead-free relaxor ceramics. J. Eur. Ceram. Soc. 40, 2929–2835 (2020). https://doi.org/10.1016/J.JEURCERAMSOC.2020.03.012

    Article  CAS  Google Scholar 

  27. G. Wang, Z.J. Liu, J.L. Li, H.F. Ji, H.J. Yang, L.H. Li, S.K. Sun, A. Feteira, H.G. Yang, R.Z. Zuo, D.W. Wang, I.M. Reaney, Lead-free (Ba,Sr)TiO3–BiFeO3 based multilayer ceramic capacitors with high energy density. J. Eur. Ceram. Soc. 40, 1779–1983 (2020). https://doi.org/10.1016/J.JEURCERAMSOC.2019.12.009

    Article  CAS  Google Scholar 

  28. F. Akram, J. Kim, S.A. Khan, A. Zeb, H.G. Yeo, Y.S. Sung, T.K. Song, M.-H. Kim, S. Lee, Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3–BaTiO3-based ceramics. J. Alloy Compd. 818, 152878 (2020). https://doi.org/10.1016/j.jallcom.2019.152878

    Article  CAS  Google Scholar 

  29. D.W. Wang, G. Wang, S. Murakami, Z.M. Fan, A. Feteira, D. Zhou, S.K. Sun, Q.L. Zhao, I.M. Reaney, BiFeO3–BaTiO3: a new generation of lead-free electroceramics. J. Adv. Dielectr. 8, 1830004 (2018). https://doi.org/10.1142/S2010135X18300049

    Article  CAS  Google Scholar 

  30. J.G. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127, 190901 (2020). https://doi.org/10.1063/5.0006261

    Article  CAS  Google Scholar 

  31. S. Kim, G.P. Khanal, H.W. Nam, M. Kim, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, In-situ electric field induced lattice strain response observation in BiFeO3–BaTiO3 lead-free piezoelectric ceramics. J. Ceram. Soc. Jpn. 126, 316–320 (2018). https://doi.org/10.2109/JCERSJ2.17259

    Article  CAS  Google Scholar 

  32. G. Wang, Z.M. Fan, S. Murakami, Z.L. Lu, D.A. Hall, D.C. Sinclair, A. Feteira, X.L. Tan, J.L. Jones, A.K. Kleppe, D.W. Wang, I.M. Reaney, Origin of the large electrostrain in BiFeO3–BaTiO3 based lead-free ceramics. J. Mater. Chem. A 7, 21254–21263 (2019). https://doi.org/10.1039/C9TA07904A

    Article  CAS  Google Scholar 

  33. T. Zheng, J.G. Wu, Perovskite BiFeO3–BaTiO3 ferroelectrics: engineering properties by domain evolution and thermal depolarization modification. Adv. Electron. Mater. 6, 2000079 (2020). https://doi.org/10.1002/aelm.202000079

    Article  CAS  Google Scholar 

  34. W. Jo, J. Rodel, Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3−x mol. % BaTiO3 piezoceramics. Appl. Phys. Lett. 99, 042901 (2011). https://doi.org/10.1063/1.3615675

    Article  CAS  Google Scholar 

  35. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H. Kleebe, A.J. Bell, J. Rodel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3. J. Appl. Phys. 110, 074106 (2011). https://doi.org/10.1063/1.3645054

    Article  CAS  Google Scholar 

  36. B.N. Rao, R. Datta, S.S. Chandrashekaran, D.K. Mishra, V. Sathe, A. Senyshyn, R. Ranjan, Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys. Rev. B 88, 224103 (2013). https://doi.org/10.1103/PHYSREVB.88.224103

    Article  Google Scholar 

  37. B.N. Rao, R. Ranjan, Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys. Rev. B 86, 134103 (2012). https://doi.org/10.1103/PHYSREVB.86.134103

    Article  Google Scholar 

  38. Q. Li, J.X. Wei, J.R. Cheng, J.G. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2017). https://doi.org/10.1007/s10853-016-0325-6

    Article  CAS  Google Scholar 

  39. S. Murakami, D.W. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z.M. Fan, X.L. Tan, I.M. Reaney, High strain (0.4%) Bi(Mg2/3Nb1/3)O3–BaTiO3–BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc. 101, 5428–5442 (2018). https://doi.org/10.1111/jace.15749

    Article  CAS  Google Scholar 

  40. C.-H. Hong, H.Z. Guo, X.L. Tan, J.E. Daniel, W. Jo, Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature. J. Mater. 5, 634–640 (2019). https://doi.org/10.1016/j.jmat.2019.06.004

    Article  Google Scholar 

  41. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  42. A. Goaz, V. Uvarov, I. Popov, S. Shenawi-khalil, Y. Sasson, A new anhydrous bismuth potassium nitrate, K3Bi2(NO3)9: synthesis, structure characterization and thermal decomposition. J. Alloys Comp. 514, 30–34 (2012). https://doi.org/10.1002/chin.201210018

    Article  CAS  Google Scholar 

  43. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006). https://doi.org/10.1007/s10853-005-5915-7

    Article  CAS  Google Scholar 

  44. H.X. Yan, F. Inam, G. Viola, H.P. Ning, H.T. Zhang, Q.H. Jiang, T. Zeng, Z.P. Gao, M.J. Reece, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107–118 (2011). https://doi.org/10.1142/S2010135X11000148

    Article  CAS  Google Scholar 

  45. L.F. Zhu, Q. Liu, B.P. Zhang, Z.Y. Chen, K. Wang, J.J. Li, Y. Bai, X.H. Wang, J.F. Li, Temperature independence of piezoelectric properties for high-performance BiFeO3–BaTiO3 lead-free piezoelectric ceramics up to 300 °C. RSC Adv. 8, 35794–35801 (2018). https://doi.org/10.1039/C8RA07553K

    Article  CAS  Google Scholar 

  46. W. Jo, R. Dittmer, M. Acosta, J.D. Zang, C. Groh, E. Sapper, K. Wang, J. Rodel, Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 29, 71–93 (2012). https://doi.org/10.1007/s10832-012-9742-3

    Article  CAS  Google Scholar 

  47. J. Yin, H. Tao, G. Liu, J.G. Wu, Domain-scale imaging to dispel the clouds over the thermal depolarization of Bi0.5Na0.5TiO3-based relaxor ferroelectrics. J. Am. Ceram. Soc. 103, 1881–1890 (2020). https://doi.org/10.1111/jace.16908

    Article  CAS  Google Scholar 

  48. N.H. Khansur, J. Biggemann, M. Stumpf, K. Riess, T. Fey, K.G. Webber, Temperature- and stress-dependent electromechanical response of porous Pb(Zr, Ti)O3. Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000389

    Article  Google Scholar 

  49. A. Sehirlioglu, D.A. Payne, P.D. Han, Effect of poling on dielectric anomalies at phase transitions for lead magnesium niobate-lead titanate crystals in the morphotropic phase boundary region. J. Appl. Phys. 99, 064101 (2006). https://doi.org/10.1063/1.2179972

    Article  CAS  Google Scholar 

  50. Q. Li, J. Wang, Y. Ma, L. Ma, G.Z. Dong, H.Q. Fan, Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3. J. Alloy. Compd. 663, 701–707 (2016). https://doi.org/10.1016/j.jallcom.2015.12.194

    Article  CAS  Google Scholar 

  51. S.M. Ke, H.Q. Fan, H.T. Huang, H.L.W. Chan, S.H. Yu, Dielectric dispersion behavior of BaZrxTi1–xO3 solid solutions with a quasiferroelectric state. J. Appl. Phys. 104, 034108 (2008). https://doi.org/10.1063/1.2964088

    Article  CAS  Google Scholar 

  52. F. Li, S.J. Zhang, D. Damjanovic, L.-Q. Chen, T.R. Shrout, Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 28, 1801514 (2018). https://doi.org/10.1002/adfm.201801504

    Article  CAS  Google Scholar 

  53. D. Maurya, A. Pramanick, M. Feygenson, J.C. Neuefeind, R.J. Bodnar, S. Priya, Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3. J. Mater. Chem. C 2, 8423–8431 (2014). https://doi.org/10.1039/C4TC01124D

    Article  CAS  Google Scholar 

  54. J.Y. Zhao, N. Zhang, W. Ren, G. Niu, D. Walker, P.A. Thomas, L.Y. Wang, Z.-G. Ye, Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3–0.06BaTiO3 piezoceramics. J. Am. Ceram. Soc. 102, 437–447 (2019). https://doi.org/10.1111/jace.15883

    Article  CAS  Google Scholar 

  55. X. Shi, N. Kumar, M. Hoffman, Electric field–temperature phase diagrams for (Bi1/2Na1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 relaxor ceramics. J. Mater. Chem. C 6, 12224–12233 (2018). https://doi.org/10.1039/C8TC04189J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project No. 11704301), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1092), the Shaanxi Provincial Education Department Program (Program No.19JK0398), and the President’s Fund of Xi’an Technological University (Project no. XAGDXJJ18006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Shen, J., Bai, C. et al. Nature of polar state in 0.67BiFeO3–0.33BaTiO3. J Mater Sci: Mater Electron 31, 19266–19276 (2020). https://doi.org/10.1007/s10854-020-04462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04462-9

Navigation