Skip to main content
Log in

Comparison of characteristics of Bi2Te3 and Bi2Te2.7Se0.3 thermoelectric materials synthesized by hydrothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, a simple approach based on hydrothermal method was developed for the synthesis of high purity Bi2Te2.7Se0.3 polyhedral nanoflakes and Bi2Te3 spherical nanoparticles. The synthesized Bi2Te3 and Bi2Te2.7Se0.3 nanopowders were characterized by X-ray diffraction, Fourier transform infrared spectrometry, field emission electron microscopy, photoluminescence (PL) and ultraviolet–visible near-infrared spectroscopy. The results showed that the produced powders (Bi2Te3 and Bi2Te2.7Se0.3) exhibit no chemical impurity formed during hydrothermal synthesis process. Besides, the ternary Bi2Te2.7Se0.3 alloy showed less oxide bond versus the Bi2Te3 alloy. The results showed that Bi2Te2.7Se0.3 powders possess a uniform nano-flake shape with an average size of 48 nm along with bandgap energy of 0.6 eV. Moreover, Bi2Te3 powders were characterized with a uniform spherical shape and an average size of 43 nm along with bandgap energy of 0.9 eV. The Bi2Te2.7Se0.3 nanoplate powders exhibited a favorable bandgap and lower PL intensity due to the larger particle size compared with the spherical Bi2Te3 nanopowders. In conclusion, the obvious specifications of Bi2Te3-based materials were improved by the incorporation of selenium using a hydrothermal procedure. It is strongly believed that this synthesis approach and characterization methods will be important for the development of thermoelectric performance and applications of these groups of materials, such as sensors, laser diode, cooling system, fiber-optic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Tang, Z. Ge, Y. Chen, P. Qin, J. Feng, J. He, J. Eur. Ceram. Soc. (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.07.005

    Article  Google Scholar 

  2. P. Sakthivel, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-014-2572-0

    Article  Google Scholar 

  3. F. Li, R. Zhai, Y. Wu, Z. Xu, X. Zhao, T. Zhu, J. Mater. (2018). https://doi.org/10.1016/j.jmat.2018.05.008

    Article  Google Scholar 

  4. G. Zhang, B. Kirk, L.A. Jauregui, H. Yang, X. Xu, Y.P. Chen, Y. Wu, Nano Lett. 12, 56–60 (2012)

    Article  Google Scholar 

  5. K. Sharma, M.L. Verma, N. Goyal, J. Nano-Electron. Phys. (2014)

  6. P. Sharief, P. Dharmaiah, C.H. Lee, S.S. Ahn, S.H. Lee, H.T. Son, S.J. Hong, J. Korean Soc. Heat Treat. 31(3), 126–134 (2018)

    Google Scholar 

  7. K. Tezuka, S. Kase, Y.J. Shan, Integr. Med. Res. (2014). https://doi.org/10.1016/j.jascer.2014.07.009

    Article  Google Scholar 

  8. M. Kumari, Y.C. Sharma, Nanosyst. Phys. Chem. Math. (2020). https://doi.org/10.17586/2220-8054-2019-10-6-686-693

    Article  Google Scholar 

  9. Ü. Demir, Y. Erdog, J. Electroanal. (2009). https://doi.org/10.1016/j.jelechem.2009.06.010

    Article  Google Scholar 

  10. S. Augustine, S. Ampili, J. Ku, E. Mathai, Mater. Res. (2005). https://doi.org/10.1016/j.materresbull.2005.04.012

    Article  Google Scholar 

  11. B. Ryu, J. Chung, E.A. Choi, B.S. Kim, S.D. Park, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.08.166

    Article  Google Scholar 

  12. Y. Pan, T. Wei, C. Wu, J. Li, J. Mater. Chem. C. (2015). https://doi.org/10.1039/C5TC02219C

    Article  Google Scholar 

  13. Q. Zhang et al., J. Inorg. Mater. 29(11), 1139–1144 (2014). https://doi.org/10.15541/jim20140085

    Article  CAS  Google Scholar 

  14. M. Ben Khedim, L. Cagnon, V. Serradeil, T. Fournier, D. Bourgault, Mater. Today Proc. (2015). https://doi.org/10.1016/j.matpr.2015.05.082

    Article  Google Scholar 

  15. M. Gharsallah, F. Serrano-sanchez, N.M. Nemes, J.L. Martinez, J.A. Alonso, Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-016-1823-9

    Article  Google Scholar 

  16. C. Kim, C.E. Kim, J.Y. Baek, D.H. Kim, J.T. Kim, J.H. Ahn, D.H. Lopez, T. Kim, H. Kim, Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.6b00933

    Article  Google Scholar 

  17. H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen, J. Cryst. Growth. (2004). https://doi.org/10.1016/j.jcrysgro.2004.02.097

    Article  Google Scholar 

  18. P. Dharmaiah, S. Hong, Int. J. Appl. Ceram. Technol. (2017). https://doi.org/10.1111/ijac.12762

    Article  Google Scholar 

  19. H.L. Ni, T.J. Zhu, X.B.Ã. Zhao, Phys. B (2005). https://doi.org/10.1016/j.physb.2005.03.034

    Article  Google Scholar 

  20. G. Dong, Y. Zhu, G. Cheng, Y. Ruan, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.09.061

    Article  Google Scholar 

  21. M. Hong, Z.G. Chen, J. Zou, Chin. Phys. B. (2018). https://doi.org/10.1088/1674-1056/27/4/048403

    Article  Google Scholar 

  22. H. Mamur, M. Ruhul, A. Bhuiyan, ISVOS J. 3, 1–7 (2019)

    Google Scholar 

  23. J. Fu, S. Song, X. Zhang, F. Cao, L. Zhou, H. Zhang, Cryst. Eng. Comm. (2012). https://doi.org/10.1039/c2ce06348d

    Article  Google Scholar 

  24. J. Guo, J. Jian, Z. Zhang, R. Wu, J. Li, Y. Sun, J. Cryst. Growth. (2016). https://doi.org/10.1016/j.jcrysgro.2015.10.028

    Article  Google Scholar 

  25. İ. Şişman, A. Başoğlu, Mater. Sci. Semicond. Process. (2016). https://doi.org/10.1016/j.mssp.2016.07.001

    Article  Google Scholar 

  26. S.K. Tripathi, A. Kumari, R. Ridhi, J. Kaur, Adv. Mater. Radiat. Phys. (2015). https://doi.org/10.1063/1.4929230

    Article  Google Scholar 

  27. P. Shyam, S. Chaturvedi, K. Karmakar, A. Bhattacharya, S. Singh, S. Kulkarni, J. Mater. Chem. C. (2016). https://doi.org/10.1039/c5tc03383g

    Article  Google Scholar 

  28. D.L. Pavia, G.L. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy (Cengage Learning, Stamford, 2015)

    Google Scholar 

  29. Y. Hosokawa, K. Tomita, M. Takashiri, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-47356-5

    Article  Google Scholar 

  30. A. Kadhim, A. Hmood, H.A. Hassan, Mater. Lett. (2011). https://doi.org/10.1016/j.matlet.2011.06.069

    Article  Google Scholar 

  31. A. Soni, Z. Yanyuan, Y. Ligen, M.K.K. Aik, M.S. Dresselhaus, Q. Xiong, Nano Lett. (2012). https://doi.org/10.1021/nl2034859

    Article  Google Scholar 

  32. D. Li, X.Y. Qin, Y.C. Dou, X.Y. Li, R.R. Sun, Q.Q. Wang, L.L. Li, H.X. Xin, N. Wang, N.N. Wang, C.J. Song, Y.F. Liu, J. Zhang, Scr. Mater. (2012). https://doi.org/10.1016/j.scriptamat.2012.04.005

    Article  Google Scholar 

  33. A.M. Adam, E. Lilov, P. Petkov, Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.09.034

    Article  Google Scholar 

  34. H.M. Ali, E.M.M. Ibrahim, M.M. Wakkad, M.A.A. Mohamed, Optik (2018). https://doi.org/10.1016/j.ijleo.2017.12.090

    Article  Google Scholar 

  35. E.R. Shaaban, Y.A.M. Ismail, H.S. Hassan, J. Non-Cryst, Solids. (2013). https://doi.org/10.1016/j.jnoncrysol.2013.05.024

    Article  Google Scholar 

  36. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, Sci. Rep. (2014). https://doi.org/10.1038/srep05757

    Article  Google Scholar 

  37. N. Hussain, Q. Zhang, J. Lang, R. Zhang, M. Muhammad, Adv. Optical Mate. (2018). https://doi.org/10.1002/adom.201701322

    Article  Google Scholar 

  38. B. Poornaprakash, D.A. Reddy, G. Murali, N.M. Rao, R.P. Vijayalakshmi, B.K. Reddy, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.04.106

    Article  Google Scholar 

  39. J. Wang, Sh Yu, H. Zhang, Optik (2018). https://doi.org/10.1016/j.ijleo.2018.11.062

    Article  Google Scholar 

  40. A.K. Kole, C.S. Tiwari, P. Kumbhakar, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4795779

    Article  Google Scholar 

  41. P. Gupta, M. Ramrakhiani, Open Nanosci. J. 3, 15–19 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sajjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi, Y., Sajjadi, S.A. & Mansouri, H. Comparison of characteristics of Bi2Te3 and Bi2Te2.7Se0.3 thermoelectric materials synthesized by hydrothermal process. J Mater Sci: Mater Electron 31, 18988–18995 (2020). https://doi.org/10.1007/s10854-020-04435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04435-y

Navigation