Skip to main content
Log in

The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The possible current-conduction mechanism (CCMs) of the Au/CoSO4-PVP/n-Si junctions was investigated using temperature-dependence current–voltage (I–V) experiments over 100–360 K. The experimental results showed that the value of BH increases approximately linearly with increasing temperature. Such positive temperature coefficient (α = ΔΦB0T) is in agreement with the reported negative temperature coefficient of the bandgap of Si (= − 0.473 meV/K). The (nap−1−1) vs q/2kT curves have different characters in two temperature ranges due to having separate two barrier distributions. The ρ2 and ρ3 values obtained from intercept and slope of these curves as 0.521 V and 0.011 V for 240–360 K temperature range and 0.737 V and 0.004 V for the 100–220 K range. This results show that the high temperature region with smaller ρ2 and larger ρ3 voltage deformation coefficients has a wider and greater of the barrier height distribution than the second region. As an evidence for the Gaussian distribution, the ΦB0 and standard deviation (σ0) were derived from the intercept and slope of the ΦB0-q/2kT curves as 1.14 eV and 0.163 V at high temperatures and 0.62 eV and 0.088 V at low temperatures. The Richardson constant obtained as 102 A/cm2K2 for 240–360 K temperature range using standard deviation value which is similar to the theoretical Richardson constant value of silicon (112 A/cm2K2). For each temperature, the profile of Nss vs (Ec–Ess) was provided using the voltage-dependent effective barrier height (Φe) value. It was observed that these surface conditions decreased with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.A. Zakheim, W.V. Lundin, A.V. Sakharov, E.E. Zavarin, P.N. Brunkov, E.Y. Lundina, A.F. Tsatsulnikov, S.Y. Karpov, Semicond. Sci. Technol. 33, 1–8 (2018)

    Article  Google Scholar 

  2. O. Pakma, N. Serin, T. Serin, Ş. Altındal, J. Appl. Phys. 104, 014501 (2008)

    Article  Google Scholar 

  3. M. Gutowski, J.E. Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin, Appl. Phys. Lett. 80, 1897–1899 (2002)

    Article  CAS  Google Scholar 

  4. Ş. Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, J. Mater. Sci. Mater. Electron. 30, 9273–9280 (2019)

    Article  Google Scholar 

  5. A. Tataroglu, S. Altindal, Y. Azizian-Kalandaragh, J. Mater. Sci. Mater. Electron. 31, 11665–11672 (2020)

    Article  CAS  Google Scholar 

  6. I. Taşçıoğlu, Ö. Sevgili, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 49, 3720–3727 (2020)

    Article  Google Scholar 

  7. M. Hussein Al-Dharob, H. Elif Lapa, A. Kökce, A. Faruk Özdemir, D. Ali Aldemir, Ş. Altındal, Mater. Sci. Semicon. Process. 85, 98–105 (2018)

    Article  Google Scholar 

  8. S. Alptekin, Ş. Altındal, J. Mater. Sci. Mater. Electron 30, 6491–6499 (2019)

    Article  CAS  Google Scholar 

  9. L.A. Lipkin, J.W. Palmour, IEEE Trans. Electron. Dev. 46, 525–532 (1999)

    Article  CAS  Google Scholar 

  10. R.T. Tung, Mater. Sci. Eng. Rev. 35, 1–138 (2001)

    Article  Google Scholar 

  11. B.P. Lakshmi, M.S.P. Reddy, A.A. Kumar, V. Rajagopal Reddy, Curr. Appl. Phys. 12, 765–772 (2012)

    Article  Google Scholar 

  12. P. Singh, S.N. Singh, M. Lal, M. Husain, Sol. Energy Mater. Sol. Cells 92, 1611–1616 (2008)

    Article  CAS  Google Scholar 

  13. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid-States Electron. 29, 633–638 (1986)

    Article  CAS  Google Scholar 

  14. S.K. Chand, J. Appl. Phys. A 63, 171–178 (1996)

    Google Scholar 

  15. M.K. Hudait, K.P. Venkateswarlu, S.B. Krupanidhi, Solid-State Electron. 45, 133–141 (2001)

    Article  CAS  Google Scholar 

  16. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, C.H. Leem, C.J. Cho, J. Electron. Mater. 44, 549–556 (2015)

    Article  CAS  Google Scholar 

  17. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589–1601 (1971)

    Article  CAS  Google Scholar 

  18. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403–7424 (1991)

    Article  CAS  Google Scholar 

  19. Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Appl. Phys. A 122, 1032 (2016)

    Article  Google Scholar 

  20. M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  21. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Teheir Applications, 2nd edn. (Plenum Press, New York and London, 1984)

    Book  Google Scholar 

  22. E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, 3rd edn. (Oxford press, Oxford, 1988)

    Google Scholar 

  23. V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Superlatt. Microstruct. 67, 242–255 (2014)

    Article  Google Scholar 

  24. F.A. Padovani, R. Stratton, Solid State Electron. 9, 695–707 (1996)

    Article  Google Scholar 

  25. S. Chand, J. Kumar, Semicond. Sci. Technol. 11, 1203–1208 (1996)

    Article  CAS  Google Scholar 

  26. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  CAS  Google Scholar 

  27. E. Arslan, Y. Şafak, Í. Taşçıoğlu, H. Uslu, E. Özbay, Microelectron. Eng. 87, 1997–2001 (2010)

    Article  CAS  Google Scholar 

  28. R. Tung, Appl. Phys. Lett. 58, 2821 (1991)

    Article  CAS  Google Scholar 

  29. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Surf. Sci. 324, 363–378 (1995)

    Article  Google Scholar 

  30. J.H. Werner, H.H. Gütter, Appl. Phys. 69, 1522–1532 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Badali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamen, H., Badali, Y., Güneşer, M.T. et al. The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions. J Mater Sci: Mater Electron 31, 18640–18648 (2020). https://doi.org/10.1007/s10854-020-04406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04406-3

Navigation