Skip to main content

High-frequency dielectric characterization of novel lead-free ferroelectrics

Abstract

Novel lead-free BFO–STO, BFO–CTO, and BFO–BZO ceramics were fabricated by the conventional method and their structural, microstructural, and dielectric properties were characterized. Dielectric measurements were carried out at room temperature in a large frequency range, from 20 Hz to 1.8 GHz. XRD analysis has demonstrated differences in the crystalline structure of the samples. BFO–STO exhibits a very different behavior compared to BFO–CTO and BFO–BZO ceramics because its XRD pattern contains peaks from diffracting planes of BFO and STO simultaneously. In comparison, the diffraction patterns of BFO–BZO and BFO–CTO are dominated by the peaks from diffracting planes of BZO and CTO, respectively. SEM observation has also revealed important differences in their microstructure. BFO–BZO and BFO–CTO have presented similar values of dielectric constant at low and high frequencies, ε′ ~ 85 from 1 to 100 MHz. The lowest value of the loss tangent was measured on BFO–CTO with tan δ = 5 × 10–3 at f = 50 MHz. The BFO–STO ceramic has given higher values of the dielectric constant, closer to those reported for the bulk STO. Nearly frequency-independent high dielectric constant with very low loss over a broad frequency range (20 Hz to 1.8 GHz) of BFO–STO ceramic makes this material a potential candidate for high-temperature and high-frequency application with superior energy performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    CAS  Article  Google Scholar 

  2. 2.

    M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  3. 3.

    S. Manivannan, A. Joseph, P.K. Sharma, K.C. James Raju, D. Das, Effect of microwave and conventional sintering on densification, microstructure and dielectric properties of BZT–xCr2O3 ceramics. Ceram. Int. 41, 10923–10933 (2015). https://doi.org/10.1016/j.ceramint.2015.05.035

    CAS  Article  Google Scholar 

  4. 4.

    S. Manivannan, V.S. Surya Chandra, P.K. Sharma, K.C. James Raju, D. Das, Effect of flux addition on mechanical and microwave dielectric properties of barium zinc tantalate ceramics. Trans. Ind. Ceram. Soc. 73, 87–89 (2014). https://doi.org/10.1080/0371750X.2014.922419

    CAS  Article  Google Scholar 

  5. 5.

    K.A. O’Connor, R.D. Curry, High dielectric constant composites for high power antennas. IEEE Pulsed Power Conf. (2011). https://doi.org/10.1109/ppc.2011.6191417

    Article  Google Scholar 

  6. 6.

    T.A.T. Sulong, R.A.M. Osman, M.S. Idris, Trends of microwave dielectric materials for antenna application. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4958779

    Article  Google Scholar 

  7. 7.

    D. Dimos, C.H. Mueller, Perovskite thin films for high frequency capacitor applications. Annu. Rev. Mater. Sci. 28, 397–419 (1998). https://doi.org/10.1146/annurev.matsci.28.1.397

    CAS  Article  Google Scholar 

  8. 8.

    I.V. Kotelnikov, V.N. Osadchy, R.A. Platonov, A.G. Altynnikov, V.V. Medvedeva, A.K. Mikhailov, A.G. Gagarin, A.V. Tumarkin, A.B. Kozyrev, Separation of the metallic and dielectric losses of tunable ferroelectric capacitors under control dc voltage. Prog. Electromagn. Res. Lett. 73, 127–131 (2018). https://doi.org/10.2528/pierl17111704

    Article  Google Scholar 

  9. 9.

    D. Dimos, S.G. Lockwood, T.J. Garino, H.N. Al-Shareef, R.W. Schwartz, Integrated decoupling capacitors using Pb(Zr, Ti)O3 thin films. Mater. Res. Symp. Proc. 433, 305–316 (1996). https://doi.org/10.1557/proc-433-305

    CAS  Article  Google Scholar 

  10. 10.

    A. Noma, D. Ueda, Reliability study on bst capacitors for gaas mmic. Integr. Ferroelectr. 15, 69–78 (1997). https://doi.org/10.1080/10584589708015697

    CAS  Article  Google Scholar 

  11. 11.

    T. Correia, M. Stewart, A. Ellmore, K. Albertsen, Lead-free ceramics with high energy density and reduced losses for high temperature applications. Adv. Eng. Mater. 19, 1700019 (2017). https://doi.org/10.1002/adem.201700019

    CAS  Article  Google Scholar 

  12. 12.

    H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-04189-6

    Article  Google Scholar 

  13. 13.

    T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 1–4 (2013). https://doi.org/10.1111/jace.12508

    CAS  Article  Google Scholar 

  14. 14.

    W. Cao, Z. Chen, T. Gao, D. Zhou, X. Leng, F. Niu, Y. Zhu, L. Qin, J. Wang, Y. Huang, Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method. Mater. Chem. Phys. 175, 1–5 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.067

    CAS  Article  Google Scholar 

  15. 15.

    X. Yang, I.D. Williams, J. Chen, J. Wang, H. Xu, H. Konishi, Y. Pan, C. Liang, M. Wu, Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence. J. Mater. Chem. 18, 3543–3546 (2008). https://doi.org/10.1039/b808396g

    CAS  Article  Google Scholar 

  16. 16.

    H.P. Kumar, C. Vijayakumar, C.N. George, S. Solomon, R. Jose, J.K. Thomas, J. Koshy, Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J. Alloys Compd. 458, 528–531 (2008). https://doi.org/10.1016/j.jallcom.2007.04.032

    CAS  Article  Google Scholar 

  17. 17.

    A. Pashkin, S. Kamba, M. Berta, J. Petzelt, G.D.C. Csete-de-Györgyfalva, H. Zheng, H. Bagshaw, I.M. Reaney, High frequency dielectric properties of CaTiO3-based microwave ceramics. J. Phys. D 38, 741–748 (2005). https://doi.org/10.1088/0022-3727/38/5/012

    CAS  Article  Google Scholar 

  18. 18.

    J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V.D. Travkin, A.A. Mukhin, A. Loidl, On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. Eur. Phys. J. B 75, 451–460 (2010). https://doi.org/10.1140/epjb/e2010-00170-x

    CAS  Article  Google Scholar 

  19. 19.

    J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsky, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorny, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Waser, Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics, evidence of polar grain boundaries. Phys. Rev. 64, 184111 (2001). https://doi.org/10.1103/physrevb.64.184111

    Article  Google Scholar 

Download references

Acknowledgements

GS, MA, and DD greatly appreciate the infrastructural support received from the School of Engineering Sciences and Technology (SEST), University of Hyderabad, India. DF wishes to thank Mr. Benoît Duponchel, research engineer in UDSMM, ULCO, France, for his work on SEM microstructures.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Didier Fasquelle or Dibakar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sreenu, G., Alam, M., Fasquelle, D. et al. High-frequency dielectric characterization of novel lead-free ferroelectrics. J Mater Sci: Mater Electron 31, 18477–18486 (2020). https://doi.org/10.1007/s10854-020-04391-7

Download citation