Influence of pH variation on CuWO4, CuWO4/WO3 and CuWO4/CuO structures stabilization: study of the photocatalytic properties under sunlight

Abstract

In this work, the reaction pH range (from 2 to 10) was used to study the stabilization of the CuWO4 phase in the presence of polyvinylpyrrolidone surfactant synthesized by the sonochemical method. The powders were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FE-SEM), nitrogen adsorption and desorption using the Brunauer–Emmett–Teller methodology and ultraviolet–visible spectroscopy (UV–Vis). The photocatalytic activity was studied against MB dye under sunlight and CuWO4 powders were tested at 5 reuse cycles. Diffractograms indicated that syntheses at pH 2 and 4 generate WO3/CuWO4 heterostructures, while reaction pH at 8 and 10 generate CuO/CuWO4 heterostructures and at pH 6 generates pure CuWO4. FE-SEM images indicated semispherical morphology for CuWO4, nanoplate morphology for CuO, and large particles without definite form for WO3 powders. The scavenger's methodology indicates that hydroxyl radicals are the main responsible for the photodegradation of methylene blue in all samples. Also, it indicates that the formation of the WO3/CuWO4 and CuO/CuWO4 heterostructures increase the e/h+ pair recombination rate, reducing the photocatalytic activity in sunlight.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C. Ferrari, F.M. Mancini, G. Damiani et al., Microchem. J. 149, 103993 (2019). https://doi.org/10.1016/j.microc.2019.103993

    CAS  Article  Google Scholar 

  2. 2.

    P. Miró, A. Arques, A.M. Amat, M.L. Marin, M.A. Miranda, Appl. Catal. B 140–141, 412 (2013). https://doi.org/10.1016/j.apcatb.2013.04.042

    CAS  Article  Google Scholar 

  3. 3.

    J. Diaz-Angulo, J. Porras, M. Mueses, R. Torres-Palma, A. Hernandez-Ramirez, F. Machuca-Martinez, J. Photochem. Photobiol. A (2019). https://doi.org/10.1016/j.jphotochem.2019.112015

    Article  Google Scholar 

  4. 4.

    F. Meng, Y. Liu, J. Wang et al., J. Colloid Interface Sci. 532, 321 (2018). https://doi.org/10.1016/j.jcis.2018.07.131

    CAS  Article  Google Scholar 

  5. 5.

    R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, in Advanced Oxidation Processes for Waste Water Treatment, ed. by S.C. Ameta, R. Ameta (Academic Press, New York, 2018)

    Google Scholar 

  6. 6.

    I. Ghoul, N. Debbache, B.A. Dekkiche et al., J. Photochem. Photobiol. A 378, 147 (2019). https://doi.org/10.1016/j.jphotochem.2019.04.018

    CAS  Article  Google Scholar 

  7. 7.

    M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Sol. Energy 135, 527 (2016). https://doi.org/10.1016/j.solener.2016.06.022

    CAS  Article  Google Scholar 

  8. 8.

    J.-C. Wang, H.-H. Lou, Z.-H. Xu et al., J. Hazard. Mater. 360, 356 (2018). https://doi.org/10.1016/j.jhazmat.2018.08.008

    CAS  Article  Google Scholar 

  9. 9.

    N.F.A. Neto, L.M.P. Garcia, E. Longo et al., J. Mater. Sci. Mater. Electron. 28, 12273 (2017). https://doi.org/10.1007/s10854-017-7044-x

    CAS  Article  Google Scholar 

  10. 10.

    N.F. Andrade Neto, E. Longo, K.N. Matsui, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Plasmonics 14, 79 (2019). https://doi.org/10.1007/s11468-018-0780-9

    CAS  Article  Google Scholar 

  11. 11.

    Y. Zhang, R. Fan, Q. Zhang et al., Mater. Res. Bull. 110, 169 (2019). https://doi.org/10.1016/j.materresbull.2018.10.031

    CAS  Article  Google Scholar 

  12. 12.

    A. Karthika, P. Karuppasamy, S. Selvarajan, A. Suganthi, M. Rajarajan, Ultrason. Sonochem. 55, 196 (2019). https://doi.org/10.1016/j.ultsonch.2019.01.038

    CAS  Article  Google Scholar 

  13. 13.

    K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, J. Ind. Eng. Chem. 20, 435 (2014). https://doi.org/10.1016/j.jiec.2013.04.038

    CAS  Article  Google Scholar 

  14. 14.

    W. Ding, X. Wu, Q. Lu, Mater. Lett. 253, 323 (2019). https://doi.org/10.1016/j.matlet.2019.06.109

    CAS  Article  Google Scholar 

  15. 15.

    M. Zhou, Z. Guo, Q. Song, X. Li, Z. Liu, Chem. Eng. J. 370, 218 (2019). https://doi.org/10.1016/j.cej.2019.03.193

    CAS  Article  Google Scholar 

  16. 16.

    N. Le Minh Tri, D.Q. Trung, D. Van-Thuan et al., Int. J. Hydrogen Energy 1, 12 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.132

    CAS  Article  Google Scholar 

  17. 17.

    B. Toby, J. Appl. Crystallogr. 34, 210 (2001). https://doi.org/10.1107/S0021889801002242

    CAS  Article  Google Scholar 

  18. 18.

    M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8(4), 2293–2303 (2015)

    Article  Google Scholar 

  19. 19.

    B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Phys. Status Solidi (b) 252, 1700 (2015). https://doi.org/10.1002/pssb.201552007

    CAS  Article  Google Scholar 

  20. 20.

    N.F. Andrade Neto, Y.G. Oliveira, J.H.O. Nascimento, B.R. Carvalho, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01894-w

    Article  Google Scholar 

  21. 21.

    I. Székely, M. Baia, K. Magyari, B. Boga, Z. Pap, Appl. Surf. Sci. 490, 469 (2019). https://doi.org/10.1016/j.apsusc.2019.06.036

    CAS  Article  Google Scholar 

  22. 22.

    N.F. Andrade-Neto, P.M. Oliveira, R.M. Nascimento, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Ceram. Int. 45, 651 (2019). https://doi.org/10.1016/j.ceramint.2018.09.224

    CAS  Article  Google Scholar 

  23. 23.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    CAS  Article  Google Scholar 

  24. 24.

    K. Li, C. Zhang, X. Li, Y. Du, P. Yang, M. Zhu, Catal. Today 335, 173 (2019). https://doi.org/10.1016/j.cattod.2018.11.003

    CAS  Article  Google Scholar 

  25. 25.

    B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Appl. Surf. Sci. 391, 175 (2017). https://doi.org/10.1016/j.apsusc.2016.07.104

    CAS  Article  Google Scholar 

  26. 26.

    F. Zhan, J. Li, W. Li et al., Int. J. Hydrogen Energy 40, 6512 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.131

    CAS  Article  Google Scholar 

  27. 27.

    L.M.P. Garcia, M.T.S. Tavares, N.F. Andrade Neto et al., J. Mater. Sci. Mater. Electron. 29, 6530 (2018). https://doi.org/10.1007/s10854-018-8635-x

    CAS  Article  Google Scholar 

  28. 28.

    R. Gupta, B. Boruah, J.M. Modak, G. Madras, J. Photochem. Photobiol. A 372, 108 (2019). https://doi.org/10.1016/j.jphotochem.2018.08.035

    CAS  Article  Google Scholar 

  29. 29.

    N.F. Andrade-Neto, P. Zanatta, L.E. Nascimento, R.M. Nascimento, M.R.D. Bomio, F.V. Motta, J. Electron. Mater. 48, 3145 (2019). https://doi.org/10.1007/s11664-019-07076-y

    CAS  Article  Google Scholar 

  30. 30.

    S. Asgharzadehahmadi, A.A. Abdul Raman, R. Parthasarathy, B. Sajjadi, Renew. Sustain. Energy Rev. 63, 302 (2016). https://doi.org/10.1016/j.rser.2016.05.030

    CAS  Article  Google Scholar 

  31. 31.

    S.K. Sharma, K. Sudarshan, D. Sen, P.K. Pujari, J. Solid State Chem. 274, 10 (2019). https://doi.org/10.1016/j.jssc.2019.03.015

    CAS  Article  Google Scholar 

  32. 32.

    N.F. Andrade Neto, Y.G. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 29, 19052 (2018). https://doi.org/10.1007/s10854-018-0031-z

    CAS  Article  Google Scholar 

  33. 33.

    C.H.R. Paula, N.F. Andrade Neto, L.M.P. Garcia et al., J. Electron. Mater. 48, 3017 (2019). https://doi.org/10.1007/s11664-019-07059-z

    CAS  Article  Google Scholar 

  34. 34.

    J. Jia, C. Jiang, X. Zhang et al., Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.07.266

    Article  Google Scholar 

  35. 35.

    M. Parthibavarman, M. Karthik, S. Prabhakaran, Vacuum 155, 224 (2018). https://doi.org/10.1016/j.vacuum.2018.06.021

    CAS  Article  Google Scholar 

  36. 36.

    N.F. Andrade Neto, P.M. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Electron. Mater. 48, 4840 (2019). https://doi.org/10.1007/s11664-019-07267-7

    CAS  Article  Google Scholar 

  37. 37.

    M. Verma, K.P. Singh, A. Kumar, Solid State Sci. (2019). https://doi.org/10.1016/j.solidstatesciences.2019.02.008

    Article  Google Scholar 

  38. 38.

    N.F. Andrade Neto, Y.G. Oliveira, M.R.D. Bomio, F.V. Motta, J. Electron. Mater. 48, 5900 (2019). https://doi.org/10.1007/s11664-019-07367-4

    CAS  Article  Google Scholar 

  39. 39.

    A.Y.S. Malkhasian, K. Narasimharao, Catal. Today (2019). https://doi.org/10.1016/j.cattod.2019.04.016

    Article  Google Scholar 

  40. 40.

    H. Ming, Z. Ma, Y. Liu et al., Dalton Trans. 41, 9526 (2012). https://doi.org/10.1039/C2DT30985H

    CAS  Article  Google Scholar 

  41. 41.

    H. Ramezanalizadeh, F. Manteghi, J. Clean. Prod. 172, 2655 (2018). https://doi.org/10.1016/j.jclepro.2017.11.145

    CAS  Article  Google Scholar 

  42. 42.

    T. Mavrič, M. Valant, M. Forster, A.J. Cowan, U. Lavrenčič, S. Emin, J. Colloid Interface Sci. 483, 93 (2016). https://doi.org/10.1016/j.jcis.2016.08.019

    CAS  Article  Google Scholar 

  43. 43.

    N.F. Andrade Neto, P.M. Oliveira, M.R.D. Bomio, F.V. Motta, Ceram. Int. 45, 15205 (2019). https://doi.org/10.1016/j.ceramint.2019.05.006

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was partially financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROCAD)—Finance Code 2013/2998/2014 and Finance Code 001. The author's thanks to the financial support of the Brazilian research financing institution: CNPq No. 307546/2014

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. F. Andrade Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 687 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, N.F., Oliveira, Y.G., Nascimento, J.H.O. et al. Influence of pH variation on CuWO4, CuWO4/WO3 and CuWO4/CuO structures stabilization: study of the photocatalytic properties under sunlight. J Mater Sci: Mater Electron 31, 18221–18233 (2020). https://doi.org/10.1007/s10854-020-04371-x

Download citation