Semitransparent CdTe solar cell with over 70% near-infrared transmittance

Abstract

CdTe solar cell is a promising alternative to conventional silicon solar cells and it is quite potential to be utilized as a top sub-cell for tandem solar cells to improve the power conversion efficiency of the existing single-junction devices, whose efficiency has been approaching their practical efficiency limit. Thus, the research and development of semitransparent CdTe solar cells are urgently required. In this work, semitransparent CdTe solar cells were prepared by utilizing 900-nm-thick ultrathin CdTe absorber and CuCl/ITO transparent back contacts. The ultrathin CdTe in the present work was prepared by magnetron sputtering and the effects of substrate temperature and deposition ambient were extensively investigated. CdTe thin films with minimal dislocation density and lowest internal strain were fabricated at a substrate temperature of 235 °C with pure Ar atmosphere. The improved optical–electrical properties of CdTe absorber were then contributing on device performance, and as a result, we successfully fabricated a semitransparent CdTe solar cell with an optimal efficiency of 8.60%. It is worth noting that the transmittance around 1000 nm in the near-infrared region (NIR) is over 70%, which is the highest value among the as-reported semitransparent CdTe solar cells. The present work paves a way to optimize the performance and improve the optical transmittance of semitransparent CdTe solar cells so that it strongly supports their potential applications in bifacial and/or tandem configurations, building integrated photovoltaics, and so on.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28(1), 3–15 (2020)

    Article  Google Scholar 

  2. 2.

    A.C. Tamboli, D.C. Bobela, A. Kanevce, T. Remo, K. Alberi, M. Woodhouse, Low-cost CdTe/Silicon tandem solar cells. IEEE J. Photovolt. 7(6), 1767–1772 (2017)

    Article  Google Scholar 

  3. 3.

    C. Heisler, C.S. Schnohr, M. Hädrich, M. Oertel, C. Kraft, U. Reislöhner, H. Metzner, W. Wesch, Transparent CdTe solar cells with a ZnO: Al back contact. Thin Solid Films 548, 627–631 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    G. Akhlesh, P. Viral, D.C. Alvin, High efficiency ultra-thin sputtered CdTe solar cells. Sol. Energy Mater. Sol. Cells 90, 2263–2271 (2006)

    Article  Google Scholar 

  5. 5.

    P.V. Meyers, C.H. Liu, L. Russell, V. Ramanathan, R.W. Birkmire, B.E. McCandless, J.E. Phillips, Polycrystalline CdTe on CuInSe2 cascaded solar cells. The 20th IEEE photovoltaic specialists conference, (1988)

  6. 6.

    V.Y. Parikh, J. Chen, S.X. Marsillac, A.D. Compaan, Transparent back contacts and interconnect junctions for CdTe top cells. IEEE PV. 550–552 (2006)

  7. 7.

    X. Wu, J. Zhou, A. Duda, J.C. Keane, T.A. Gessert, Y. Yan, R. Noufi, 13·9%-efficient CdTe polycrystalline thin-film solar cells with an infrared transmission of ∼50%. Prog. Photovolt. Res. Appl. 14(6), 471–483 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    T.A. Gessert, M.J. Romero, S. Johnston, B. Keyes, P. Dippo, Spectroscopic cathodoluminescence studies of the ZnTe:Cu contact for CdS/CdTe solar cells. The 29th IEEE Photovoltaic Specialists Conference, (2002)

  9. 9.

    T.M. Barnes, X. Wu, J. Zhou, A. Duda, J. van de Lagemaat, T.J. Coutts, Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells. Appl. Phys. Lett. 90(24), 243503 (2007)

    Article  Google Scholar 

  10. 10.

    N.E. Gorji, Oxygen incorporation into CdS/CdTe thin film solar cells. Opt. Quant. Electron. 47, 2445–2453 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film-dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82, 187–199 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (1956)

    CAS  Article  Google Scholar 

  13. 13.

    C. Li, G. Chen, W.W. Wang, J.Q. Zhang, L.L. Wu, X. Hao, L.H. Feng, Grain boundary passivation by CdCl2 treatment in CdTe solar cells revealed by Kelvin probe force microscopy. J. Mater. Sci. 29(24), 20718–20725 (2018)

    CAS  Google Scholar 

  14. 14.

    G.G. Zeng, J.Q. Zhang, L.L. Wu, B. Li, W. Li, L.H. Feng, Effects of different CdCl2 annealing methods on the performance of CdS/CdTe polycrystalline thin film solar cells. Sci. China Technol. Sci. 58, 876–880 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    K. Gutierrez Z-B, P.G. Zayas-Bazán, F. de Moure-Flores, D. Jiménez-Olarte, J. Sastré-Hernández, C.A. Hernández-Gutiérrez, J.R. Aguilar-Hernández, C. Mejía-García, A. Morales-Acevedo, G. Contreras-Puente, Development of a CdCl2 thermal treatment process for improving CdS/CdTe ultrathin solar cells. J. Mater. Sci. 30(18), 16932–16938 (2019)

    CAS  Google Scholar 

  16. 16.

    S. Chander, M.S. Dhaka, Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications. Physica E 80, 62–68 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    R. Kulkarni, A. Pawbake, R. Waykar, A. Jadhavar, A. Rokade, S. Rondiya, S. Karpe, K. Diwate, A. Funde, V. Sharma, G. Lonkar, S. Jadkar, Substrate temperature dependent structural, optical, morphology and electrical properties of RF sputtered CdTe thin films for solar cell application. J. Mater. Sci. 27(12), 12405–12411 (2016)

    Google Scholar 

  18. 18.

    S. Adachi, T. Kimura, N. Suzuki, Optical properties of CdTe: experiment and modeling. J. Appl. Phys. 74(5), 3435–3441 (1993)

    CAS  Article  Google Scholar 

  19. 19.

    P. Hervb, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35(4), 609–615 (1994)

    Article  Google Scholar 

  20. 20.

    J.D. Major, L. Bowen, R. Treharne, K. Durose, Assessment of photovoltaic junction position using combined focused ion beam and electron beam-induced current analysis of close space sublimation deposited CdTe solar cells. Prog. Photovolt. 22(10), 1096–1104 (2014)

    Article  Google Scholar 

  21. 21.

    X.Y. Yang, B. Liu, B. Li, J.Q. Zhang, W. Li, L.L. Wu, L.H. Feng, Preparation and characterization of pulsed laser deposited a novel CdS/CdSe composite window layer for CdTe thin film solar cell. Appl. Surf. Sci. 367, 480–484 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis. Prog. Photovolt. 12(23), 155–176 (2004)

    CAS  Article  Google Scholar 

  23. 23.

    M. Emziane, K. Durose, D.P. Halliday, A. Bosio, N. Romeo, In situ oxygen incorporation and related issues in CdTe/CdS photovoltaic devices. J. Appl. Phys. 100(1), 1–5 (2006)

    Article  Google Scholar 

  24. 24.

    C.B. Feng, W.-J. Yin, J.L. Nie, X.T. Zu, M.N. Huda, S.-H. Wei, M.M. Al-Jassim, Y.F. Yan, Possible effects of oxygen in Te-rich Σ3 (112) grain boundaries in CdTe. Solid State Commun. 152(18), 1744–1747 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    B. Saha, R. Thapa, K.K. Chattopadhyay, Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique. Solid State Commun. 145, 33–37 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    M.Y. El Azhari, M. Azizan, A. Bennouna, A. Outzourhit, E.L. Ameziane, M. Brunel, Preparation and characterization of CdTeO3 thin films. Thin Solid Films 366, 82–87 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61704115), the Major Science and Technology Projects of Sichuan Province (Grant No. 2019ZDZX0015), and the Fundamental Research Funds for the Central Universities (No. YJ201722).We would like to thank Dr. Yingming Zhu, from the Institute of New Energy and Low-Carbon Technology, Sichuan University, for SEM images capturing and analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xia Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, F., Hao, X. et al. Semitransparent CdTe solar cell with over 70% near-infrared transmittance. J Mater Sci: Mater Electron 31, 18198–18208 (2020). https://doi.org/10.1007/s10854-020-04368-6

Download citation