Growth of large-area two-dimensional non-layered β-In2S3 continuous thin films and application for photodetector device


In this work, the large-area two-dimensional non-layered β-In2S3 continuous thin films were grown on mica substrate by physical vapor deposition (PVD) at temperature of 980 °C using In2S3 powders as precursor. The 2D β-In2S3 thin films were transferred from mica substrate to SiO2/Si substrate. The back-gate field effect transistors (FETs) based on the 2D β-In2S3 thin films were fabricated using a conventional photolithographic technique. The morphology, thickness, crystal structure and optical property of the 2D β-In2S3 thin films as well as photoresponse performance of devices were characterized at room temperature under ambient condition. The results show that the 2D β-In2S3 continuous thin films are assembled from the 2D β-In2S3 flakes by tiling on each other with broad-area plane-to-plane contacts. The thickness of the 2D β-In2S3 films is in the range from 23 to 236 nm. The as-fabricated photodetectors exhibit highly stable and reproducible photoresponse properties with responsivity of 11.2 A/W and external quantum efficiency of 2.6 × 103% under 532 nm incident light with power density of 159.2 mW/cm2. The rise time and decay time of device are 90 ms and 80 ms, respectively. The 2D β-In2S3 thin films have very good application prospects in the field of electronic and optoelectronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    H.H. Radamson, Graphene, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer, Cham, 2017)

    Google Scholar 

  2. 2.

    C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J.B. Li, J.C. Grossman, J.Q.W. Thermally, Driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    W.C. Jin, P.C. Yeh, N. Zaki, D.T. Zhang, J.T. Sadowski, A. Al-Mahboob, A.M. van der Zande, D.A. Chenet, J.I. Dadap, I.P. Herman, P. Sutter, J. Hone, R.M. Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013)

    Article  Google Scholar 

  5. 5.

    Y. Tian, L. Wang, H. Tang, W. Zhou, Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3, 11294–11301 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Gao, S. Zhang, X. Bu, Y. Tian, Surface defect engineering via acid treatment improving photoelectrocatalysis of β-In2S3 nanoplates for water splitting. Catal. Today 327, 271–278 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    M.A. Mughal, R. Engelken, R. Sharma, Progress in indium(III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells. Sol. Energy 120, 131–146 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, D.B. Mitzi, High efficiency Cu2ZnSn(S, Se)4 solar cells by applying a double In2S3/CdS emitter. Adv. Mater. 26, 7427–7431 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    K. Hara, K. Sayama, H. Arakawa, Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes. Sol. Energy Mater. Sol. Cells 62, 441–447 (2001)

    Article  Google Scholar 

  10. 10.

    X. Xie, G. Shen, Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 7, 5046–5052 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    J. Lu, A. Wei, Y. Zhao, L. Tao, Y. Yang, Z. Zheng, H. Wang, D. Luo, J. Liu, L. Tao, H. Li, J. Li, J.B. Xu, Graphene/In2S3 van der waals heterostructure for ultrasensitive photodetection. Acs Photonics 5, 4912–4919 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    W.J. Huang, L. Gan, H.T. Yang, N. Zhou, R.Y. Wang, W.H. Wu, H.Q. Li, Y. Ma, H.B. Zeng, T.Y. Zhai, Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 27, 1702448 (2017)

    Article  Google Scholar 

  13. 13.

    R. Diehl, R. Nitsche, Vapour growth of three In2S3 modifications by iodine transport. J. Cryst. Growth 28, 306–310 (1975)

    CAS  Article  Google Scholar 

  14. 14.

    W.T. Kim, C.D. Kim, Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis. J. Appl. Phys. 60, 2631–2633 (1986)

    CAS  Article  Google Scholar 

  15. 15.

    Y.H. Kim, J.H. Lee, D.W. Shin, S.M. Park, J.S. Moon, J.G. Nam, J.B. Yoo, Synthesis of shape-controlled β-In2S3 nanotubes through oriented attachment of nanoparticles. Chem. Commun. 46, 2292–2294 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    R.F. Mccarthy, R.D. Schaller, D.J. Gosztola, G.P. Wiederrecht, A.B. Martinson, Photoexcited carrier dynamics of In2S3 thin films. J. Phys. Chem. Lett. 6, 2554–2561 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    E. Ghorbani, K. Albe, Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory. J. Appl. Phys. 123, 103103 (2018)

    Article  Google Scholar 

  18. 18.

    S. Marsillac, N.S. Mangale, V. Gade, S.V. Khare, Structural and electronic properties of β-In2X3 (X = O, S, Se, Te) using ab initio calculations. Thin Solid Films 519, 5679–5683 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Zhao, D. Yu, J. Lu, L. Tao, Z. Chen, Y. Yang, A. Wei, L. Tao, J. Liu, Z. Zheng, M. Hao, J. Xu, Thickness-dependent optical properties and in-plane anisotropic Raman response of the 2D β-In2S3. Adv. Opt. Mater. 7, 1901085 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Tian, L.Q. Wang, H.Q. Tang, W.W. Zhou, Ultrathin two-dimensional β-In2S3 nanocrystals:oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3, 11294–11301 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D.Y.C. Leung, Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Appl. Catal. B 95, 393–399 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    J.T. Lu, A.X. Wei, Y. Zhao, L.L. Tao, Y.B. Yang, Z.Q. Zheng, H. Wang, D.X. Luo, J. Liu, L. Tao, H. Li, J.B. Li, J.B. Xu, Graphene/In2S3 van der Waals heterostructure for ultrasensitive photodetection. ACS Photonics 5, 4912–4919 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Sharma, P. Srivastava, Electronic, optical and transport properties of α-, β- and γ-phases of spinel indium sulphide: an ab initio study. Mater. Chem. Phys. 135, 385–394 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    A.K. Nayak, S. Lee, Y. Sohn, D. Pradhan, Synthesis of In2S3 microspheres using a template-free and surfactant-less hydrothermal process and their visible light photocatalysis. CrystEngComm 16, 8064–8072 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    K.M. Deng, L. Li, CdS nanoscale photodetectors. Adv. Mater. 26, 2619–2635 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    Q. Li, A.C.X. Wei, J.T. Lu, L.L. Tao, Y.B. Yang, D.X. Luo, J. Liu, Y. Xiao, Y. Zhao, J.B. Li, Synthesis of submillimeter-scale single crystal stannous sulfide nanoplates for visible and near-infrared photodetectors with ultrahigh responsivity. Adv. Electron. Mater. 4, 1800154 (2018)

    Article  Google Scholar 

  27. 27.

    Q.S. Wang, M. Safdar, K. Xu, M. Mirza, Z.X. Wang, J. He, Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497–7505 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    X.F. Wang, X.H. Lu, B. Liu, D. Chen, Y.X. Tong, G.Z. Shen, Flexible energy storage devices: design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014)

    CAS  Article  Google Scholar 

Download references


This work has been financially supported by the National Natural Science Foundation of China (Grant No. 61705044).

Author information



Corresponding author

Correspondence to Aixiang Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Zhuo, Z., Wei, A. et al. Growth of large-area two-dimensional non-layered β-In2S3 continuous thin films and application for photodetector device. J Mater Sci: Mater Electron 31, 18175–18185 (2020).

Download citation