Surface-treated Cu2ZnSnS4 nanoflakes as Pt-free inexpensive and effective counter electrode in DSSC

Abstract

Inexpensive semiconducting counter electrode (CE) was fabricated from copper zinc tin sulfide (CZTS) nanoflakes (NFs) through simple non-vacuum-based techniques. The kesterite CZTS NFs were synthesized by hot injection method using oleic acid as solvent. CZTS CE was prepared through solid-state ligand exchange method using ammonium sulfide salt ((NH4)2S) as the displacement ligand. Thin-film CZTS CE (on FTO substrate) was developed through inexpensive layer-by-layer (LbL) approach, without any post-treatment such as toxic sulfurization process. Hence, the fabrication of CZTS CE through this approach is scalable. The CZTS thin film showed NFs like morphology with higher surface area and achieved good electrocatalytic activity towards the reduction of iodide electrolyte. Two DSSCs using different CEs (CZTS NFs and Pt) were fabricated in separate cell structures in our laboratory. DSSC with CZTS NFs as CE showed the power conversion efficiency of 2.95% which is comparable to the DSSC with Pt (3.11%).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S.-L. Chen, A.-C. Xu, J. Tao, H.-J. Tao, Y.-Z. Shen, L.-M. Zhu, J.-J. Jiang, T. Wang, L. Pan, Green. Chem. 18(9), 2793–2801 (2016)

    CAS  Google Scholar 

  2. 2.

    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    CAS  Google Scholar 

  3. 3.

    X. Xin, M. He, W. Han, J. Jung, Z. Lin, Angew. Chem. Int. Ed. 50(49), 11739–11742 (2011)

    CAS  Google Scholar 

  4. 4.

    Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan, L. Fan, J. Mater. Chem. A 1(44), 13885–13889 (2013)

    CAS  Google Scholar 

  5. 5.

    S.-L. Chen, J. Tao, H.-J. Tao, Y.-Z. Shen, A.-C. Xu, F.-X. Cao, J.-J. Jiang, T. Wang, L. Pan, Dalton Trans. 45(11), 4513–4517 (2016)

    CAS  Google Scholar 

  6. 6.

    J.M. Pringle, V. Armel, D.R. MacFarlane, Chem. Commun. 46(29), 5367–5369 (2010)

    CAS  Google Scholar 

  7. 7.

    S. Siriroj, S. Pimanpang, M. Towannang, W. Maiaugree, S. Phumying, W. Jarernboon, V. Amornkitbamrung, Appl. Phys. Lett. 100(24), 243303 (2012)

    Google Scholar 

  8. 8.

    M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, A. Hagfeldt, T. Ma, Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)

    CAS  Google Scholar 

  9. 9.

    F. Gong, H. Wang, X. Xu, G. Zhou, Z.-S. Wang, J. Am. Chem. Soc. 134(26), 10953–10958 (2012)

    CAS  Google Scholar 

  10. 10.

    H. Wang, Y.H. Hu, Energy Environ. Sci. 5, 8182–8188 (2012)

    CAS  Google Scholar 

  11. 11.

    J. Shen, D. Zhang, J. Li, X. Li, Z. Sun, S. Huang, Nano-Micro. Lett. 5, 281–288 (2013)

    Google Scholar 

  12. 12.

    S. Lu, H. Yang, F. Li, Y. Wang, S. Chen, G. Yang, Y. Liu, X. Zhang, Sci. Rep. 8, 8714 (2018)

    Google Scholar 

  13. 13.

    G.K. Gupta, A. Dixit, J. Renew. Sustain. Energy 9, 013502 (2017)

    Google Scholar 

  14. 14.

    J. Kong, Z. Zhou, M. Li, W. Zhou, S. Yuan, R. Yao, Y. Zhao, S. Wu, Nanoscale Res. Lett. 8, 464 (2013)

    Google Scholar 

  15. 15.

    A. Roy, P. Sujatha Devi, S. Karazhanov, D. Mamedov, T.K. Mallick, S. Sundaram, AIP Adv. 8, 70701 (2018)

    Google Scholar 

  16. 16.

    X. Zhang, Y. Xu, J. Zhang, S. Dong, L. Shen, A. Gupta, N. Bao, Sci. Rep. 8, 248 (2018)

    Google Scholar 

  17. 17.

    S. Sawanta, M. Chang, S. Chang, K. Hong, Mater. Res. Bull. 59, 249–253 (2014)

    Google Scholar 

  18. 18.

    A. Agasti, S.S. Nemala, S. Mallick, P. Bhargava, Sol. Energy 176, 325–333 (2018)

    CAS  Google Scholar 

  19. 19.

    J.P. Swant, R.B. Kale, J. Solid State Electrochem. 24, 461–472 (2020)

    Google Scholar 

  20. 20.

    L.Q. Phuong, M. Okano, Y. Yamada, A. Nagaoka, K. Yoshino, Y. Kanemitsu, Appl. Phys. Lett. 103, 191902 (2013)

    Google Scholar 

  21. 21.

    S.K. Swami, N. Chaturvedi, A. Kumar, N. Chander, V. Dutta, D.K. Kumar, A. Ivaturi, S. Senthilarasu, H.M. Upadhyaya, Phys. Chem. Chem. Phys. 16(43), 23993–23999 (2014)

    CAS  Google Scholar 

  22. 22.

    S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Electrochim. Acta 263, 26–33 (2018)

    CAS  Google Scholar 

  23. 23.

    J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Chem. Soc. Rev. 46(19), 5975–6023 (2017)

    CAS  Google Scholar 

  24. 24.

    U. Ghorpade, M. Suryawanshi, S.W. Shin, K. Gurav, P. Patil, S. Pawar, C.W. Hong, J.H. Kim, S. Kolekar, Chem. Commun. 50(77), 11258–11273 (2014)

    CAS  Google Scholar 

  25. 25.

    C.H.M. Van Oversteeg, F.E. Oropeza, J.P. Hofmann, E.J.M. Hensen, P.E. de Jongh, C. de Mello Donega, Chem. Mater. 31(2), 541–552 (2019)

    Google Scholar 

  26. 26.

    M.-S. Fan, J.-H. Chen, C.-T. Li, K.-W. Cheng, K.-C. Ho, J. Mater. Chem. A 3(2), 562–569 (2015)

    CAS  Google Scholar 

  27. 27.

    H. Zhang, B. Hu, L. Sun, R. Hovden, F.W. Wise, D.A. Muller, R.D. Robinson, Nano. Lett. 11(12), 5356–5361 (2011)

    CAS  Google Scholar 

  28. 28.

    S. Wonzy, K. Wang, W. Zhou, J. Am. Chem. A 1, 15517–15523 (2013)

    Google Scholar 

  29. 29.

    Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132(49), 17384–17386 (2010)

    CAS  Google Scholar 

  30. 30.

    C.I. Mary, M. Senthilkumar, S.M. Babu, J. Mater. Sci. 29, 9751–9756 (2018)

    Google Scholar 

  31. 31.

    P. Dai, G. Zhang, Y. Chen, H. Jiang, Z. Feng, Z. Lin, J. Zhan, Chem. Commun. 48(24), 3006–3008 (2012)

    CAS  Google Scholar 

  32. 32.

    Z. Lan, J. Wu, J. Lin, M. Huang, X. Wang, Thin Solid Films 522, 425–429 (2012)

    CAS  Google Scholar 

  33. 33.

    A. Carrete, A. Shavel, X. Fontané, J. Montserrat, J. Fan, M. Ibáñez, E. Saucedo, A. Pérez-Rodríguez, A. Cabot, J. Am. Chem. Soc. 135(43), 15982–15985 (2013)

    CAS  Google Scholar 

  34. 34.

    M.J. Turo, J.E. Macdonald, ACS Nano 8(10), 10205–10213 (2014)

    CAS  Google Scholar 

  35. 35.

    M. Zhou, Y. Gong, J. Xu, G. Fang, Q. Xu, J. Dong, J. Alloys Compd. 574, 272–277 (2013)

    CAS  Google Scholar 

  36. 36.

    H. Jiang, P. Dai, Z. Feng, W. Fan, J. Zhan, J. Mater. Chem. 22(15), 7502–7506 (2012)

    CAS  Google Scholar 

  37. 37.

    Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, J. Phys. Chem. C 115(40), 19632–19639 (2011)

    CAS  Google Scholar 

  38. 38.

    Z. Tang, J. Wu, M. Zheng, J. Huo, Z. Lan, Nano Energy 2(5), 622–627 (2013)

    CAS  Google Scholar 

  39. 39.

    X. Wang, Y. Xie, B. Bateer, K. Pan, Y. Jiao, N. Xiong, S. Wang, H. Fu, ACS Appl. Mater. Interfaces 9(43), 37662–37670 (2017)

    CAS  Google Scholar 

  40. 40.

    Z. Li, A.L.K. Lui, K.H. Lam, L. Li, Y.M. Lam, Inorg. Chem. 53, 10874–10880 (2014)

    CAS  Google Scholar 

  41. 41.

    J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, C.-S. Lee, J. Phys. Chem. C 116(37), 19718–19723 (2012)

    CAS  Google Scholar 

  42. 42.

    A. Zaban, S.G. Chen, S. Chappel, B.A. Gregg, Chem. Commun. 22, 2231–2232 (2000)

    Google Scholar 

  43. 43.

    S. Hussain, S.A. Patil, D. Vikraman, A.A. Arbab, S.H. Jeong, H.-S. Kim, Appl. Surf. Sci. 406, 84–90 (2017)

    CAS  Google Scholar 

  44. 44.

    S.A. Ansari, H. Yadav, M. Adeel, K. Yoo, J.-J. Lee, J. Mater. Sci. 30, 6929–6935 (2019)

    CAS  Google Scholar 

  45. 45.

    B.H.J. Snaith, M. Gratzel, Adv. Mater. 18, 1910–1914 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank (Grant No. ERIP/EP/201808007/M01/1740) for funding the research work. The part of the characterization was performed using facility at CeNSE (INUP user program) in IISC, Bengaluru funded by Ministry of Electronics and Information Technology (MeitY), and Govt. of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Moorthy Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mary, C.I., Senthilkumar, M., Manobalaji, G. et al. Surface-treated Cu2ZnSnS4 nanoflakes as Pt-free inexpensive and effective counter electrode in DSSC. J Mater Sci: Mater Electron 31, 18164–18174 (2020). https://doi.org/10.1007/s10854-020-04365-9

Download citation