Bridging the plasmonic copper and N-Doped graphitic carbon by embedding conductive honeycomb-like carbon sphere mediators for highly efficient photocatalytic hydrogen evolution

Abstract

Improving the separation of photogenerated electron–hole pairs is considered an effective approach to enhance the photocatalytic activities. Herein, Cu nanoparticles (NPs) are loaded on N-doped graphitic carbon (NGC)/honeycomb-like carbon sphere (HCS), where HCSs is dispersed on the NGC layer, obtaining a novel NGC/HCS/Cu NPs (GCPC) hierarchical structure for photocatalytic hydrogen evolution under simulated sunlight. The intercalation of HCS as the interface mediator plays an important role in effectively enhancing the migration and separation of the hot electrons generated by the surface plasmon resonance (SPR) of Cu NPs for water photosplitting. Interestingly, the near-infrared photoluminescence for GCPC was observed under 500 nm light excitation. The optimized NGC/HCS/Cu NPs hierarchical structure reveals a remarkable photocatalytic H2 evolution rate (2.721 mmol g−1 h−1), which is much higher than those of NGC/Cu NPs (VCPC0.25) and carbonized carbon sphere/Cu NPs (GCC), and exhibits high stability after multiple photocatalytic cycles.

This is a preview of subscription content, log in to check access.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    T. Montini, V. Gombac, L. Sordelli, J.J. Delgado, X. Chen, G. Adami, P. Fornasiero, ChemCatChem. 3, 574–577 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    S.H. Noh, M.H. Seo, X. Ye, Y. Makinose, T. Okajima, N. Matsushita, B. Han, T. Ohsaka, J. Mater. Chem. A. 3, 22031–22034 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    T.B. Huang, Z.X. Xu, G.C. Zeng, P.Y. Zhang, T. Song, Y.L. Wang, T. Wang, S.B. Huang, T.T. Wang, H.P. Zeng, Carbon 143, 257–267 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    P. Zhang, T. Song, T. Wang, H. Zeng, Appl. Catal. B 225, 172–179 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    T. Wang, D. Wu, Y. Wang, T. Huang, G. Histand, T. Wang, H. Zeng, Nanoscale. 10, 22055–22064 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Y.L. Wang, T. Song, P.Y. Zhang, T.B. Huang, T. Wang, T.T. Wang, H.P. Zeng, Acs Sustain. Chem. Eng. 6, 11536–11546 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    S.B. Wang, Y. Wang, S.L. Zhang, S.Q. Zang, X.W. Lou, Adv. Mater. 31, 7 (2019)

    Google Scholar 

  9. 9.

    S.B. Wang, B.Y. Guan, X.W. Lou, Energy Environ. Sci. 11, 306–310 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    K. M. Alam, P. Kumar, A. P. Manuel, E. Vahidzadeh, A. Goswami, S. Zeng, W. J. Wu, N. Mahdi, K. Cui, A. E. Kobryn, S. Gusarov, Y. N. Song, K. Shankar, 2D Mater. 7, 19 (2020).

  11. 11.

    A.P. Manuel, A. Kirkey, N. Mahdi, K. Shankar, J. Mater. Chem. C. 7, 1821–1853 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    T.S. Zhou, R.G. Ma, Y. Zhou, R.H. Xing, Q. Liu, Y.F. Zhu, J.C. Wang, Microporous Mesoporous Mater. 261, 88–97 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Rozlivkova, M. Trchova, M. Exnerova, J. Stejskal, Synth. Met. 161, 1122–1129 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    M. Radoičić, G. Ćirić-Marjanović, V. Spasojević, P. Ahrenkiel, M. Mitrić, T. Novaković, Z. Šaponjić, Appl. Catal. B 213, 155–166 (2017)

    Article  Google Scholar 

  15. 15.

    Y. Li, M. Zhao, N. Zhang, R. Li, J. Chen, J. Alloy. Compd. 643, 106–110 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    J. Li, X. Liu, X. Piao, Z. Sun, L. Pan, RSC Adv. 5, 16592–16597 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    A. Boudjemaa, A. Rebahi, B. Terfassa, R. Chebout, T. Mokrani, K. Bachari, N.J. Coville, Sol. Energy Mater. Sol. Cells 140, 405–411 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    K. Li, X. Xie, W.-D. Zhang, Carbon 110, 356–366 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    Z. Lei, N. Christov, X.S. Zhao, Energy Environ. Sci. 4, 1866 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    T. Zhan, H. Yin, J. Zhu, J. Chen, J. Gong, L. Wang, Q. Nie, J. Alloy. Compd. 786, 18–26 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    B. Jia, M. Qin, Z. Zhang, A. Chu, L. Zhang, Y. Liu, X. Qu, J. Mater. Sci. 48, 4073–4080 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    P. Zhang, T. Song, T. Wang, H. Zeng, Int. J. Hydrogen Energy 42, 14511–14521 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    S. Zarrin, F. Heshmatpour, J Hazard Mater. 351, 147–159 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    D. Chen, F. Zhang, W. Wang, Y. Yang, G. Qian, Int. J. Hydrogen Energy 43, 2121–2129 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    C. Wu, X. Wang, B. Ju, L. Jiang, H. Wu, Q. Zhao, L. Yi, J. Power Sources 227, 1–7 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    J. Cao, L. Li, Y. Xi, J. Li, X. Pan, D. Chen, W. Han, Sustain. Energy Fuels 2, 1350–1355 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    J. Quílez-Bermejo, C. González-Gaitán, E. Morallón, D. Cazorla-Amorós, Carbon 119, 62–71 (2017)

    Article  Google Scholar 

  28. 28.

    M. Vujković, N. Gavrilov, I. Pašti, J. Krstić, J. Travas-Sejdic, G. Ćirić-Marjanović, S. Mentus, Carbon 64, 472–486 (2013)

    Article  Google Scholar 

  29. 29.

    P. Zhang, T. Wang, H. Zeng, Appl. Surf. Sci. 391, 404–414 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    M.H. Kang, S.J. Lee, J.Y. Park, J.K. Park, J. Alloy. Compd. 735, 2162–2166 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    J.G. Zhou, C. Booker, R.Y. Li, X.T. Zhou, T.K. Sham, X.L. Sun, Z.F. Ding, J. Am. Chem. Soc. 129, 744–745 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Y.Q. Dong, H.C. Pang, H.B. Yang, C.X. Guo, J.W. Shao, Y.W. Chi, C.M. Li, T. Yu, Angewandte Chemie-International Edition. 52, 7800–7804 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    S. Kalikeri, N. Kamath, D.J. Gadgil, V. Shetty Kodialbail, Environ. Sci. Pollut. Res. Int. 25, 3731–3744 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    C. Wang, Z. Guo, R. Hong, J. Gao, Y. Guo, C. Gu, Chemosphere 197, 576–584 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    H. Xu, X. Wu, X. Li, C. Luo, F. Liang, E. Orignac, J. Zhang, J. Chu, Carbon 127, 491–497 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    R. Blyth, H. Buqa, F. Netzer, M. Ramsey, J. Besenhard, P. Golob, M. Winter, Appl. Surf. Sci. 167, 99–106 (2000)

    CAS  Article  Google Scholar 

  37. 37.

    L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, M. A. Pimenta, Applied Physics Letters. 88 (2006).

  38. 38.

    H. Yu, F. Peng, J. Tan, X.W. Hu, H.J. Wang, J.A. Yang, W.X. Zheng, Angewandte Chemie-International Edition. 50, 3978–3982 (2011)

    CAS  Article  Google Scholar 

  39. 39.

    W.L. Han, Y.S. Zhao, F. Dong, G.D. Zhang, G.X. Lu, Z.C. Tang, Microporous Mesoporous Mater. 250, 35–42 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    D. Dong, H. Guo, G. Li, L. Yan, X. Zhang, W. Song, Nano Energy. 39, 470–477 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    X.H. Li, M. Antonietti, Chem Soc Rev. 42, 6593–6604 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province [Grant Number 2019A1515011368]; the PhD Start-up Fund of Natural Science Foundation of Guangdong Province [Grant Number 2018A030310362]; the Fundamental Research Funds for the Central Universities [Grant Number X2hgD2182020]; and the support of International Clean Energy Talent Program by China Scholarship Council [Grant Number 201904100037].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tingting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7938 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, T., Zhuang, Z. et al. Bridging the plasmonic copper and N-Doped graphitic carbon by embedding conductive honeycomb-like carbon sphere mediators for highly efficient photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 31, 18045–18055 (2020). https://doi.org/10.1007/s10854-020-04355-x

Download citation