An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite

Abstract

Here in, we present the extensive analysis of the parameters associated with structural, electronic, optical and mechanical properties of HC(NH2)2PbI3 or FAPbI3 (FA = Formamidinium) by using full potential linearized augmented plane wave method (FP-LAPW) within framework on the density functional theory. The band structure shows that FAPbI3 has a direct band gap (1.44 eV) at the symmetry point R (0.5, 0.5, 0.5) and are in best agreement with experimental data. The strong hybridization of s orbitals of Pb and p orbitals of I in valance band plays an important role in the structural stability. From the mechanical constants, we have observed that this is ductile in nature and perfect use for photovoltaic applications. Further, FAPbI3 photovoltaic device has been prepared and device parameters have discussed for ZnO, ZnS, ZnSe, ZnTe and CdS buffer layers. The calculated results for FAPbI3 thin layer solar cell show maximum efficiency (20.48% and 20.77%) with ZnS and CdS buffer layers respectively. The proposed results further validate the prospects of methylammonium (MA) free perovskites and it would be persistent and consistent with the flexible substratum. These are the main features of commercialization perovskite solar cells. Thus, promoting the evolution of cubic FAPbI3, for achieving high performance-based optoelectronic devices and will pave a new path in solar cell industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    T.K. Joshi, G. Pravesh, G. Sharma, AS Verma (2020) Investigation of structural, electronic, optical and thermoelectric properties of Ethylammonium tin iodide (CH3CH2NH3SnI3): An appropriate hybrid material for photovoltaic application. Mater. Sci. Semicond. Proces 115, 105111 (2020)

    CAS  Google Scholar 

  2. 2.

    T.K. Joshi, A. Shukla, G. Sharma, A.S. Verma, Computational determination of structural, electronic, optical thermoelectric and thermodynamic properties of hybrid perovskite CH3CH2NH3GeI3: An emerging material for photovoltaic cell. Mater. Chem. Phys. 251, 123103 (2020)

    CAS  Google Scholar 

  3. 3.

    A. Shukla, V.K. Sharma, S.K. Gupta, A.S. Verma, Investigations of fundamental physical and thermoelectric properties of methylammonium lead iodide (CH3NH3PbI3) perovskites. Mater. Res. Express 6, 126323 (2019)

    CAS  Google Scholar 

  4. 4.

    H. El-Ghtami, A. Laref, S. Laref, Electronic and optical behaviors of methylammonium and formamidinium lead trihalide perovskite materials. J. Mater. Sci. 30, 711–720 (2019)

    CAS  Google Scholar 

  5. 5.

    M. Hu, M. Chen, P. Guo, H. Zhou, J. Deng, Y. Yao, Y. Jiang, J. Gong, Z. Dai, Y. Zhou, F. Qian, Sub-1.4 eV band gap inorganic perovskite solar cells with long-term stability. Nat. Commun. 11, 151 (2020)

    CAS  Google Scholar 

  6. 6.

    T.H. Han, J.W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.J. Lee, S.H. Bae, Y. Yuan, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019)

    CAS  Google Scholar 

  7. 7.

    Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M. Fam van Hest, K. Zhu, Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018)

    CAS  Google Scholar 

  8. 8.

    B.E. Azar, A. Ramazani, S.T. Fardood, A. Morsali, Green synthesis and characterization of ZnAl2O4@ ZnO nano-composite and its environmental applications in rapid dye degradation. Optik 208, 164129 (2020)

    Google Scholar 

  9. 9.

    K. Atrak, A. Ramazani, S.T. Fardood, Green synthesis of Zn0.5Ni0.5AlFeO4 magnetic nanoparticles and investigation of their photocatalytic activity for degradation of reactive blue 21 dye. Environ. Technol. 41, 2760–2770 (2019)

    Google Scholar 

  10. 10.

    M. Sorbiun, E.S. Mehr, A. Ramazani, S.T. Fardood, Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int. J. Environ. Res. 12, 29–37 (2018)

    CAS  Google Scholar 

  11. 11.

    S.T. Fardood, A. Ramazani, S. Moradi, P.A. Asiabi, Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. 28, 13596–13601 (2017)

    Google Scholar 

  12. 12.

    D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994)

    CAS  Google Scholar 

  13. 13.

    Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5, 1700387 (2018)

    Google Scholar 

  14. 14.

    M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 16, 3209–3212 (2015)

    Google Scholar 

  15. 15.

    A. Binek, F.C. Hanusch, P. Docampo, T. Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. J. Phys. Chem. Lett. 7, 1249–1253 (2015)

    Google Scholar 

  16. 16.

    Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N.P. Padture, G. Cui, Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 20, 7149–7155 (2015)

    Google Scholar 

  17. 17.

    Y. Zhou, J. Kwun, H.F. Garces, S. Pang, N.P. Padture, Observation of phase-retention behavior of the HC(NH2)2PbI3 black perovskite polymorph upon mesoporous TiO2 scaffolds. Chem. Commun. 45, 7273–7275 (2016)

    Google Scholar 

  18. 18.

    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 30, 16458–16462 (2014)

    Google Scholar 

  19. 19.

    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)

    CAS  Google Scholar 

  20. 20.

    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CHNH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)

    CAS  Google Scholar 

  21. 21.

    M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, H. Han, Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH [double bond, length as m-dash] NH2PbI3. J. Mater. Chem. A 40, 17115–17121 (2014)

    Google Scholar 

  22. 22.

    Y. Fu, H. Zhu, A.W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.Y. Zhu, S. Jin, Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016)

    CAS  Google Scholar 

  23. 23.

    A. Perumal, S. Shendre, M. Li, Y.K.E. Tay, V.K. Sharma, S. Chen, Z. Wei, High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci Rep 6, 36733 (2016)

    CAS  Google Scholar 

  24. 24.

    S. Li, S. Tong, J. Yang, H. Xia, C. Zhang, C. Zhang, J. Shen, High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Org. Electron. 47, 102–107 (2017)

    CAS  Google Scholar 

  25. 25.

    Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S. Liu, 20-mm-Large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4, 1829–1837 (2016)

    CAS  Google Scholar 

  26. 26.

    Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016)

    CAS  Google Scholar 

  27. 27.

    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    CAS  Google Scholar 

  28. 28.

    J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014)

    CAS  Google Scholar 

  29. 29.

    T. Liu, Y. Zhou, Z. Li, L. Zhang, M.G. Ju, D. Luo, Y. Yang, M. Yang, D.H. Kim, W. Yang, N.P. Padture, Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv. Energy Mater 8, 1800232 (2018)

    Google Scholar 

  30. 30.

    N.G. Park, T. Miyasaka, M. Grätzel, Organic-Inorganic Halide Perovskite Photovoltaics (Springer, Cham, 2016)

    Google Scholar 

  31. 31.

    E.H. Anaraki, A. Kermanpur, M.T. Mayer, L. Steier, T. Ahmed, S.H. Turren-Cruz, J. Seo, J. Luo, S.M. Zakeeruddin, W.R. Tress, T. Edvinsson, Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 3, 773–778 (2018)

    Google Scholar 

  32. 32.

    J. Chen, S. Zhou, S. Jin, H. Li, T. Zhai, Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 4, 11–27 (2016)

    CAS  Google Scholar 

  33. 33.

    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    CAS  Google Scholar 

  34. 34.

    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965)

    Google Scholar 

  35. 35.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, "Wien2k" An augmented plane wave+ local orbitals program for calculating crystal properties. Tech. Univ. Wien 28, 2001 (2001)

    Google Scholar 

  36. 36.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  37. 37.

    P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)

    CAS  Google Scholar 

  38. 38.

    F. Birch, Finite Elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    CAS  Google Scholar 

  39. 39.

    F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    CAS  Google Scholar 

  40. 40.

    S. Sharma, A.S. Verma, V.K. Jindal, Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X=S, Se, Te). Mater. Res. Bull. 53, 218–233 (2014)

    CAS  Google Scholar 

  41. 41.

    M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, L. Wang, T. Tesfamichael, Electronic and optical properties of lead-free hybrid double perovskites for photo-voltaic and optoelectronic applications. Sci Rep 9, 718 (2019)

    Google Scholar 

  42. 42.

    M. Born, On the stability of crystal lattices. Math. Proc. Cambridge Philos Soc 36, 160–172 (1940)

    CAS  Google Scholar 

  43. 43.

    W. Voigt, Lehrbuch der kristallphysik (Teubner, Leipzig, 1928), p. 962

    Google Scholar 

  44. 44.

    E. Haque, M.A. Hossain, First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn. Results Phys. 10, 458–465 (2018)

    Google Scholar 

  45. 45.

    J. Fang, Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B= Sn, Pb; X= Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014)

    Google Scholar 

  46. 46.

    A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech 9, 49–58 (1929)

    CAS  Google Scholar 

  47. 47.

    P. Wachter, M. Filzmoser, J. Rebizant, Electronic and elastic properties of the light actinide tellurides. Physics B 293, 199–223 (2001)

    CAS  Google Scholar 

  48. 48.

    O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J Phys. Chem. Solids 24, 909–917 (1963)

    CAS  Google Scholar 

  49. 49.

    M.W. Barsoum, T. El-Raghy, W.D. Porter, H. Wang, J.C. Ho, S. Chakraborty, Thermal properties of Nb2SnC. J. Appl. Phys. 88, 6313–6316 (2000)

    CAS  Google Scholar 

  50. 50.

    S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1953)

    Google Scholar 

  51. 51.

    S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Google Scholar 

  52. 52.

    A.S. Verma, R. Gautam, P. Singh, S. Sharma, S. Kumari, Investigation of fundamental physical properties of CdSiP2 and its application in solar cell devices by using (ZnX; X= Se, Te) buffer layers. Mater. Sci. Eng B 205, 18–27 (2016)

    CAS  Google Scholar 

  53. 53.

    J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229–4236 (2015)

    CAS  Google Scholar 

  54. 54.

    Y. Cheng, Q.D. Yang, J. Xiao, Q. Xue, H.W. Li, Z. Guan, H.L. Yip, S.W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7, 19986–19993 (2015)

    Google Scholar 

  55. 55.

    J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells. J. Mater. Chem. A 4, 8435–8443 (2016)

    CAS  Google Scholar 

  56. 56.

    S. Kumari, A.S. Verma, Buffer layer selection for CuIn1-xGaxSe2 based thin film solar cells. Mater. Res. Express 1, 016202 (2014)

    Google Scholar 

  57. 57.

    S. Sun, F.H. Isikgor, Z. Deng, F. Wei, G. Kieslich, P.D. Bristowe, J. Ouyang, A.K. Cheetham, Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. Chemsuschem 10, 3740–3745 (2017)

    CAS  Google Scholar 

  58. 58.

    A.C. Ferreira, A. Létoublon, S. Paofai, S. Raymond, C. Ecolivet, B. Rufflé, S. Cordier, C. Katan, M.I. Saidaminov, A.A. Zhumekenov, O.M. Bakr, J. Even, P. Bourges, Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 121, 085502 (2018)

    CAS  Google Scholar 

  59. 59.

    J.F. Wang, X.N. Fu, J.T. Wang, First-principles analysis of the structural, elec-tronic, and elastic properties of cubic organic–inorganic perovskite HC(NH2)2PbI3. Chin. Phys. B 26, 106301 (2017)

    Google Scholar 

  60. 60.

    L. Guo, G. Tang, J. Hong, Mechanical properties of formamidinium halide perovskites FABX3 (FA=CH(NH2)2; B= Pb, Sn; X= Br, I) by first-principles calculations. Chin Phys. Lett. 36, 056201 (2019)

    CAS  Google Scholar 

  61. 61.

    K.F. Young, H.P.R. Frederikse, Compilation of the static dielectric constant of inorganic solids. J Phys. Chem. Reference Data 2, 313–410 (1973)

    Google Scholar 

  62. 62.

    K.K. Kim, S. Niki, J.Y. Oh, J.O. Song, T.Y. Seong, S.J. Park, S. Fujita, S.W. Kim, High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing. J. Appl. Phys. 97, 066103 (2005)

    Google Scholar 

  63. 63.

    M.A. Bodea, G. Sbarcea, G.V. Naik, A. Boltasseva, T.A. Klar, J.D. Pedarnig, Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition. Appl. Phys. A 110, 929–934 (2013)

    CAS  Google Scholar 

  64. 64.

    J.R. Ray, C.J. Panchal, M.S. Desai, U.B. Trivedi, Simulation of CIGS thin film solar cells using AMPS-1D. J. Nano Electronic Phys. 3, 747–754 (2011)

    Google Scholar 

  65. 65.

    S. Mondal, S.R. Bhattacharyya, P. Mitra, Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction. Pramana 80, 315–326 (2013)

    CAS  Google Scholar 

  66. 66.

    R.K. Swank, Surface properties of II-VI compounds. Phys. Rev. 153, 844 (1967)

    CAS  Google Scholar 

  67. 67.

    W.E. Spear, J. Mort, Electron and hole transport in CdS crystals. Proc. Phys. Soc. 81, 130 (1963)

    CAS  Google Scholar 

  68. 68.

    M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013)

    CAS  Google Scholar 

  69. 69.

    M.A. Olopade, O.O. Oyebola, B.S. Adeleke, Investigation of some materials as buffer layer in copper zinc tin sulphide (Cu2ZnSnS4) solar cells by SCAPS-1D. Adv. Appl. Sci. Res. 3, 3396–3400 (2012)

    CAS  Google Scholar 

  70. 70.

    K.P. Giapis, D.-C. Lu, K.F. Jensen, High quality epitaxial ZnSe and the relationship between electron mobility and photoluminescence characteristics. Appl. Phys. Lett. 54, 353–355 (1989)

    CAS  Google Scholar 

  71. 71.

    C.G. Van de Walle (ed.), Wide-Band-Gap Semiconductors (Elsevier, New York, 1993)

    Google Scholar 

  72. 72.

    Hydrogen as an Energy Carrier, Technologies (Economy edited C. J. Winter, J. Nitsch, Springer, Systems, 1988)

    Google Scholar 

  73. 73.

    M.A. Green, Solar Cells, Operating Principles, Technology and System Applications (Prentice Hall Inc., Upper Saddle River, 1982)

    Google Scholar 

  74. 74.

    M.S. Hossain, M.M. Aliyu, M.A. Matin, M.A. Islam, M.R. Karim, T. Razykov, K. Sopian, N. Amin, Effect of different BSR in front and back contacts for ZnxCd1-xS/CdTe solar cell. Int. J. Mech. Mater. Eng. 6, 350–355 (2011)

    Google Scholar 

  75. 75.

    Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 1–7 (2016)

    Google Scholar 

  76. 76.

    F. Anwar, R. Mahbub, S.S. Satter, S.M. Ullah, Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int J Photoenergy 2017, 1–9 (2017)

    Google Scholar 

  77. 77.

    L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017)

    CAS  Google Scholar 

  78. 78.

    Z. Yecheng. Theoretical studies of perovskite solar cells. PhD diss., 2017.

  79. 79.

    F.F. Targhia, Y.S. Jalilia, F. Kanjourica, MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results Phys 10, 616–627 (2018)

    Google Scholar 

  80. 80.

    S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof, Absolute energy level positions in tin-and lead-based halide perovskites. Nat Commun 10, 2560 (2019)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajay Singh Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monika, Pachori, S., Kumari, S. et al. An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite. J Mater Sci: Mater Electron 31, 18004–18017 (2020). https://doi.org/10.1007/s10854-020-04352-0

Download citation